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Applications, risks and impacts

An increasingly digitised society involves recording human activity and
monitoring products and processes. In the agri-food sector this gives rise to
large quantities of data. At the same time, data is also generated for
research and scientific experiments.

There is a growing interest in the applications of artificial intelligence (Al) in
the agri-food sector to extract or exploit the information that can be
detected in these data sets. Artificial intelligence algorithms, and the
models derived from them, are used as support systems for better decision
making or, in some cases, are implemented in automatic control processes
and robotics, to alleviate drudgery.

In this study, sensing and data collection in different agri-food sectors are
described, together with how the data can lead to better management and
better decision making in crop and animal production.

As with other technological advances, Al in this domain comes with its own
set of benefits, risks, ethical issues and societal implications. Questions
raised with respect to Al include: how to balance potential benefits against
potential risks; how to govern the use of these technologies; and how to
incorporate socio-ethical value considerations into the policy and legal
frameworks under development. Policies for training and education have to
support potential users.
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Artificial intelligence in the agri-food sector

Executive summary

Agri-food activities for delivering high-quality food or other products under sustainable production
conditions involve many complex processes with many variables. Thesevariables can have complex
interactions, some of which are outside the control of producers or otheractorsin the value chain.
Precision agriculture in field crops or animal production and highly automated greenhouse
production are inherently linked to the continuous use of record keeping and sensing technology
for plant growth, canopy development and animal behaviour. As aresult, everyday onafarmorin
afood-processing facility, thousands of data points are collected. Artificial intelligence (Al) could be
a powerful toolin helping organisations copewith this increasing complexity in modernagriculture.

Intensive data collection paves the way for growers, and all other actorsin the value chain, to adopt
artificial intelligence as a data-driven practice to gain more insights and, ultimately, better control
the processes that affect producer income. Data collection is carried out manually by farmers or
relies on equipment that is an important part of smart agriculture. While installed sensors deliver
quantities of real time data, the ownership of the data and the exploitation of the models derived
should be clarified.

In greenhouse production andanimal husbandry,individual plants oranimals, the in-house climatic
conditions and their set-points are almost continuously monitored and recorded in highly local
detail. This should lead to more efficient production and improve workers' wellbeing and animal
welfare. In open fields, protected cultivation and animal sheds, machinery can executemanagement
decisions made by a famer, based on Al advice or solely through Al-based electronic controls. Alis
also an important tool for the automation and robotics that may relieve workers of drudgery.
Potential risks should be addressed however, and the new technologies require proper testing in
experimentalsettings (digital sandboxesand testingand experimentationfacilities), to ensure that
they are safe and secure againstaccidentalfailures,unintended consequences, and cyberattack.

Artificialintelligence algorithms make it possible to analyse and look for interactions in these large
quantities of data, resulting from many sensors and observing many processes. To maximise benefit,
high-quality data should be available and collected from robust, reliable sensors with low
maintenance and low costs, and efforts made to specify the required quality of data. Data from
multiple sources should be connected and the interoperability, or ease of data transfer, facilitated.
As a next step, these algorithms make decision suggestions for the farmer or, even, implement
certain decisions independently. The need therefore arises for ways to test the models' effects
before they enter the market - both for their effectiveness and for flaws or unforeseen negative
aspects. Al can solve the current scarcity of resources and skilled labour, but organisations and
governments must make sure that training in digital skills is available for all agri-food participants.
Legislation can help to avoid creating a digital divide within farming or food-processing
communities. Monetising agricultural data and the rewards for users (farmers) and holders (machine
orinput suppliers) should be clearly explained. It may be appropriate to have some sector-specific
regulatory objectivesto handle the imbalance between the differentstakeholders.

Large companies supplying Al software for analysis in agriculture can have an effect on the way
agriculture evolves. Onthe otherhand, retailers collect and analyse a massive quantity of data about
the preferences and behaviour of their customers. A combination of these elements may create a
potential for biased recommendations to farmers, to favourthe optimisation of supplies being sent
to specific food retailers. New start-ups could take a different view of the data and come up with
new applications that may give more independent advice to farmers. European Union legislative
initiatives should ensure thatthis doesnot lead toa reduction in agrobiodiversity. Asalgorithms are
under continuous construction, and only a limited number of large companies can sustain such
efforts, this may also lead to a small base for decision making and may lead to biased decision
making.
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Bringing the benefits of Al and digital agriculture to all farmers requires accessibility to networks
and affordable broadband internet access, notonly in residences, but also in the fields. Farmers or
small and medium-sized enterprises (SMEs) must also make several complementary investments,
such as installing specialised infrastructure for collecting and transferring data. Infrastructure
policies may be needed here.

This study defines several issues that may require special measures or policy action to ensure all
stakeholders have access to a fair and equitable participation in the benefits that Al may bring to
agriculture:

Rights and expectationsfor farmers, technology providersand the public.

Regulation of the exploitation and governance of the European databases.

Risk and liability for technology providersand users.

Automationand the protection of farm workers.

Transparency and qualityassurance of Almodels.

Digital literacy and the digital divide.

Legislation that preventsfarmers becoming locked-in to corporate digital technology.
Policies towards new marketentrants which limit dominant positions of first movers.
Affordability and accessibility of the data infrastructure and the information technology
network.

Supporting investment by farmersor SMEs to make use of potential Al benéefits.
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1. Introduction

In this introduction, we first define the concept of smart agriculture. A short narrative illustrates the
evolution of data collection, data availability and the need to use and combine all the data into
information that helps farmers in making betterdecisionsfor more effective crop production, given
a number of societal constraints. We draw attention to the agri-food chain, from the field to the
consumer, although we limit further study tothe productionand storage steps. In a third, short, sub-
section we introduce artificial intelligence as a tool to handle and combine data, in addition to
scientific information to gain better insights and, hopefully, prepare or assist in future decision
making and action. In the application domains, ethical and policy recommendations are given in
subsequent sectionsof the study.

1.1. Smart agriculture

Agri-food production systems involve processes and processing conditions are very variable (eg.
the natural variability of biological processes, soils and climate). Furthermore, there are expectations
from society, with respect to production conditions, inputsand the quality of the outputs. This also
creates the need to document and registerthe activities.

Smart agricultureis a management concept that guides action towards safeguarding or increasing
agricultural productivity and food security under variable physical and chemical constraints, a
changing climate andincreasing demandsor expectations of transparency towardsall actors in the
agri-food chain.

Artificial intelligence (Al) is a tool that may allow smart agriculture to achieve objectives that are
beyond the reach of human capabilities. The processing of a huge amount of dataand transforming
them into actionableitems is one of the challenges for the future.

1.2. Changesin data collection in agriculture

Data from agriculturalland, crop yields, and milk production have been collected or madeavailable
for some time. For example, research into the characteristics of soils and their effect on crop
production were the basis of soil classification for the creation of soil maps that indicated the large
variability of soils. Farmers knew to registerthe amount of grain produced on each field and found
that it was related to weather, soil type and the amountof fertiliser applied. The milk production of
each cow and the quality of the milk was registered through farm visits by advisors and the
laboratoryanalysis of milk samples, on a regularbasis.

Around 1980, it was realised that it would be better to try to adjust field management practices
according to soil variability. This started the research and development into measuring local
production within a field. From then on,a combine harvester has not only harvestedgrain but also
automatically harvested dataabouttheyield in a field.

Yield maps were — and still are - like colourful paintings. However, these paintings differ from year
to year, depending on the weather conditions, fertiliser application, water availability or pests and
disease during the growing period.

In a similar way to yield monitors, other measurement methods are still under development to
assess the prevalence of diseases or nutrient and water stress during the growing period. Optical
sensors were installed on machinesto detectweeds and then a sprayer, oranother mechanism, was
instructed to destroy the weed. This is very similar to hand weeding, where a person sees a plant,
decides thatitis an unwanted weed (onthe basis of knowledge and expertise) and then takes action
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to destroy the weed. Sensor-based data collection is an important component of automation,
leading to robotic or autonomous systems for navigation,crop maintenance and harvesting.

Gradually, more and more data became available on farms but using the data to enable better
decision making, remains a challenge. First of all, the data relates to past seasons and the year to
year variability implies that this year'sdata on yield are not a good predictor for next year's.

Secondly, all the different types of sensors can collect data in the fields over many years, but the
question remains: how do these 'historic' data contribute to better decisionson crop management
plans for the next growing season? One may wonder if there are ways to develop diagnostic tools
(sensors and/or analytics) that can almost instantaneously help to formulate decisions and even
start action for online management.

The next question which arises is: are there additionalindicators thatwe can find and measure, on
plants or animals, which contribute to improved decisions and more effective management? Here,
one can expect more answers fromthe research.

Of course, management decisions have to respect environmental considerations and the
expectations of society, as well as consumers, with respect to production methods, inputs in
agriculture and productquality and safety.

Figure 1.1 Data can be collectedinthe field from crops soilsand machines and are
available to the end user.
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1.3. Activitiesin the agricultural value chain

The agri-food system hasfourimportant components (Peters et al., 2020):

e On-farm production, where the production of plants or livestock interacts with soils, water,
nutrients and microbes.
e Afterharvest,the packaging, storage, processingand distribution of food.
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e Consumers, individuals and households have preferences, behaviour, knowledge, health
considerationsand budgets.

e Uncertainty and variability in allthe above componentsassociated with human activities, biotic
factors (pests pathogens,diseases) and (difficult to predict) climatic conditions.

Artificial intelligence will play an increasing role in these components. A simplified, yet typical,

agricultural supply chain comprises several steps, from the farmers' activities in the field, to

intermediate storage or silos, transportationfrom storage to transformation plants and, from there,

onto clients and consumers. In each step, data can be collected and will require multiple decisions

to be made. The collected data must evolve from the field, up until the use of the product by

processors or consumers, with the data being stored somewhere in the cloud, as presented in the

simplified formin Figure 1.1.

There may be aneed for further researchinto the underlying physical or biological processes, for a
better understanding of the processes orto find better ways of observation and control.

Thereare many actors in this value chain and each may have a particular interestin certain data or
storethese at differentlocations. The data flow and information flow through different processes in
the agri-food value chain is illustrated in Figure 1.2. The entire agri-food chain, with the different
actors, can benefit from the digitisation and use of artificial intelligence tools because of the
integrated flow of information, both upstream and downstream. At this point in the study, it is
assumed that each actorin the chain is — or will be — able to deliver a product and the associated
data or information to the next actor. In future, it may become clear that an overall analysis of the
chain can offer advantages, albeit at the cost of larger investments in research on sensors, data
collection and analytics.

Figure 1.2 Data and information flow for decisions in the agri-food-value chain (modified
from a presentation by lan Ferguson, ACPA 2017, Hamilton, New Zealand)
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Differences in data quality, raw data formats, their accuracy and transmission challenges, paired
with the high volume of data available at different times or location intervals, are among the many
challenges that have hindered the rapid automation, use and reliability of artificial intelligence in
the agri-food chain.

With so many actors, it is not clear where the data reside and how a smooth data flow can be made
possible, whereby data ownership considerations, GDPR and efficient Al-based developments are
possible. At many pointsin this flow, uncertain external events can occur.

1.4. Artificial intelligence for smart agriculture

In Article 3 of the proposed artificial intelligence act for Europe (EUR-Lex-52021PC0206 - EN - EUR-
Lex, 2021), the following definition is given:

'Artificial intelligence system' (Al system) means softwarethat is developed with one or more of the
techniques and approaches listed (in Appendix 1, here under *)'and can, for a given set of human-
defined objectives, generate outputs such as content, predictions, recommendations, or decisions
influencing the environments theyinteractwith.

An Independent High-level Expert Group on Artificial Intelligence, set up by the European
Commission (AIHLEG, 2018), proposedto use the following updated definition of Al:

o 'Artificialintelligence (Al) refers to systems designed by humansthat, given a complexgoal, act
in the physical or digital world by perceiving their environment, interpreting the collected
structured or unstructured data, reasoning on the knowledge derived from this data and
deciding the best action(s) to take (according to pre-defined parameters) to achieve the given
goal. Al systems can also be designed to learn to adapt their behaviour by analysing how the
environment is affected by their previousactions.

e As a scientific discipline, Al includes several approaches and techniques, such as machine
learning (of which deep learning and reinforcement learning are specific examples), machine
reasoning (which includes planning, scheduling, knowledge representation and reasoning,
search, and optimisation), and robotics (which includes control, perception, sensors and
actuators, as well as the integration of all other techniques into cyber-physical systems).' See
Figure1.3.

Smart agriculture can be seen as a management concept that relies on data and insights obtained
during research efforts, as well as during agri-food operations. The information can be structured in
many different ways and results in decisions; sometimes automatically implementing these into
actions towards safeguarding or increasing agricultural productivity and food security under
variable physicaland chemical constraintsin a changing climate. Artificial intelligenceis a tool that
allows smart agriculture to achieve objectives that arebeyondthe reach of humancapabilities. The
processing of a huge amount of data and transforming them into actionable items is one of the
challenges for the future.

'*in Appendix 1,the artificial intelligence techniques and approaches include:

(@) Machine learning approaches, including supervised, unsupervised and reinforcement learning, using a wide variety of
methods including deep learning;

(b) Logic and knowledge-based approaches, including knowledge representation, inductive (logic) programming,
knowledge bases, inference and deductive engines, (symbolic) reasoning and expert systems;

(c) Statistical approaches, Bayesian estimation, searching, and optimisation methods.
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There are several variables that farmers can control, such as variety selection, planting date,
fertigation rate, pesticide application rate and interval times, machine usage and consumption.
However, the interaction of multiple factors and the continuous variation of parameters can
represent a huge obstacle to achieving the best combination of inputs. The aims are to ensure
growth in production, control machine costs and reach predictable stability in the market.
Furthermore, many variables are beyond farmers' control, such as environmental factors. Current
and historical data analysis can provide a more predictable forecastfor farmers. Of course, the final
yield and the production costs are the result of all the efforts during the growing period. Business
intelligence on available data can provide economic advantages for farmers. Data are increasingly
collected by machine and field sensors, which are capable of importing high-quality data about
critical factors in yield production, such as soil variation and quality, water and nutrient availability,
plant health and disease control, as well as crop growth and evolution.In order to complement the
expertise of farmers and operators, these data with high variance and uncertainty have to be
analysed such that they can become an information base for making better decisions. External
conditions, like local short-termweather changes, do notalwayshavea degree of predictability that
makes them reliable enough for short-term managementdecisions.

Figure 1.3 Al's sub-disciplinesand theirrelationship
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Observations, analyses and interpretation which enable the making of decisions and implementing
them, occur at different scales in a field, single plant, farm or region. Timescales are often chosen
based on the time horizon and they can be very short (a matterof minutes,in the case of protected
cultivation), short (a matterof days, in the case of crop responses) orverylong (over several seasons,
in the case of soil changes).

A multifactor analysis of observed variables can be the basis for regional policy, advisory services
and managing a farm or afield. The expertise of a farmerand his skills areimportantcomponents in
the decision making. When farmers rely on advice from consultantsand advisory services, these also
need to have been properly trained beforehand, in addition to farmers.

Disturbances in external conditions complicate the design and control of equipment and decision
making, as well as the evaluation of the impact of these decisionsandtools on the outcome, in terms
of profit, as well as environmental effects.
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In agriculture,improvementsareexpected or promised in manyareas, basedon theexploration and
exploitation of data when these are available (Figure 1.4). Cost reductions, crop forecasting, and
improved decision-making and efficiency are additional benefits directly benefiting farmers.

Figure 1.4 Promisedareas of improvementofagriculture in the exploitation of the data
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1.5. European initiatives for Aland is applicationsin agri-food

The European dataact

The proposed data act aims to maximise the value of data in the economy by ensuring thata wider
range of stakeholdersgain control over their dataand that more datais available for innovative use,
while preserving incentives to investin data generation (Data Act | Shaping Europe's Digital Future,
n.d.). Thedata act should give the users of the connected productsand relatedservices therightto
access data generated by those productsand services.

Foragriculture, the DIGITAl programmeincludes:

A common European agricultural data space: With the European data act, the European Commission
is expected to support the implementation of a common European agricultural data space,
facilitating the trustworthy sharingand poolingof agricultural data. The dataspace should increase
the economicand environmental performance of the agricultural sector. This means enabling data
sharing as well as practical, fair and clear rules on data use and access.

In precision agriculture, internet of things (loT) analytics of data from connected equipment can
help farmers analyse real-time data like weather, temperature, moisture, prices or global positioning
system (GPS) signals and provide insights on how to optimise and increase yield. This should
improve farm planning and help farmers make decisions about the level of resources needed. It
would also protect farmersthat use smartagricultural equipmentagainst manufacturers who would
use insights into farm yields to speculate on agricultural commodity pricing, essentially using
farmers' dataagainstthem (Kogut-Czarkowska & Graux, 2022).

Al testing and experimentation facilities (TEF): the European Commission and Member States should
develop world-class, large-scale reference testing and experimentation facilities (TEF) for Al in
several sectors, including agri-food. There should be a boost in the uptake of trustworthy Al for the
European agri-food sector. A call for the TEF for agri-food was launched in February 2022. Six
proposals were submitted, but five were not eligible. It is expected that the contract will be signed
in thefirst half of 2022 for a project duration of five years.
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Digital Innovation Hubs (DHIs): These provide technological expertise and experimentation facilities
to enable the digital transformation of the industry and the public sector. The experiences and
lessons learned from the existing DIH SmartAgriHubs and AgroRobofood are good reference points.

Digital skills: Enhancing the digital skills of the farmers can be achieved via specialised education
programmesor modules in key capacity areas which also includes the design and implementation
of specific courses in digital technologies for professionalsin the agricultural sector.

Horizon Europe

The European Commission has invested in research and innovation, including agri-food (European
Commission, 2022). Cluster6 'Food, bio-economy, natural resources, agriculture, fisheries,
aquaculture & the environment' includes the use of digital solutions for the agricultural sector. In
addition, under Pillar Il, Cluster 4 'Digital, Industry and Space', innovative technologies such as loT,
cloud and edge computing, Al, robotics, and blockchain will be tested and validated in cases of
agriculturaluse.

The following topics are listed:

e Development, testing and validation of innovative technologies through the use of cases in
agriculture:loT, Al, robotics, blockchain and edge computing;

¢ Apply advanced technologies in agri-food: drones, smart loT, Al, upscaling real-time sensor
data, 5G and edge solutions for remote farming;

o Cost-benefitanalysisand increasing cost-effectiveness of digital solutions;

* Potential market exploration, roadmap for adoption of technologies.

The common agricultural policy (CAP)

The CAP has a cross-cutting objective on digitisation, knowledge and innovation which includes
investment support for the European Innovation Partnership for Agricultural Productivity and
Sustainability (EIP-AGRI).

The 'Farm to Fork' strategy targets for sustainable food production are challenging and ambitious
for the agricultural sector, in which digital technology is a key to success. Using loT technologies
offers a potential to optimisethe use of pesticides onthe land, minimising harmful chemicals in the
environment andmakingcrops safe for consumption.

1.6. Approach of the study

In the following sections, expertsin differentfields of agri-food reflecton the state of the knowledge
in their area (measurement and automation tools in particular) and then look at how Al modelling
and algorithms can contribute to better managing the agri-food value chain. The subdivision into
the different domains was basedon sectorialimportance, as well as activities that areimportant for
the whole of agriculture and agri-foods.

Figure 1.5 gives the output of the agriculturalindustry, whereby we see that cropsare 55.3 % of the
outputandanimals 36.3 %. In crop production, a large share of fruit and vegetables productionis in
protected cultivation (Eurostat, 2021). Protected cultivationis very intensive production on a rather
small spatial scale but with high financial investment, high labour density and crop density per
surface unit. It also has a high data density per surface area and per time unit. Crop production in
the open air involves a rather large surface area and, more or less, follows the seasons because of
annual production cycles.Betweenthe Member States, thereis a largevariationin average farm size.
Digitalliteracy may also show large variations between farmsand it is, therefore, important that this
digital divide does not increase or lead to uneven negotiating power when dealing with
manufacturers, suppliers, retailers or other customers. Similarly, there are differences in farm sizes
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with respect to animal production. In addition, animal production has increasingly to cope with
environmental constraints and greenhouse gas emissions.

Figure 1.5 Output of the agricultural industry sectors in Europe in 2021in %
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Furthermore, water availabilityand use isa common challenge across the sectors and across Europe.
Post-harvest quality assessment, storage and transportation are important activities for the whole
oftheagri-food sector.Animportant concern is the reduction oravoidance of food waste. Therefore,
post-harvest activities put an emphasis on advanced non-destructive methods for monitoring
product quality in the value chain. The agricultural machinery industry is instrumental in data
collection and automation and has close links with other industries for advanced tools that can be
madefor useinagriculture.

Fortheareas of agriculture that are consideredas beingexemplaryfor the potential of Al, we looked
for experts who were familiar with the state of the art in the subject domain and who had
technological expertise. An effort was made to include experts from different regions in Europe.
After theinitial contacts, and based on their availability, the experts or expert teams were asked to
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provide a state of the art, based on the literature and their own expertise, and also to formulate
challenges as well as policy options. The latter were collected in the last section of this study.

e Protected cultivation (S.Hemming et al., Wageningen Universityand Research -WUR)

e Cropproductioninthe open air (F. Rovira-Mds, U.P. Valencia and D. Moshou, Aristotle University,
Thessaloniki)

e Theuseof water for crop production (G. Wyseure, KU Leuven)

e Animalhusbandry(T.Norton, KU Leuven)

e Alinthesupply chain of horticultural products (B. Nicolai, KU Leuven and S. Hemming, WUR)

e AlandAgricultural Machinery (CEMA, the European Agricultural Machinery Association)

Section 8 contains reflections on ethical and societalimpacts thattheimplementation of Al can have
andon therisksthatmayarise for individual farmers, as well as regional orecological developments.
These are mainly based on the literature and informal discussions.

Section 9 analyses the barriers and their challenges towards the successful application of Al in
agriculture. The challenge for better and more trustworthy algorithms is also discussed. All of the
authors contributed.

In the final section, policy options and recommendations are formulated based on the authors'
expert opinions and additional literature.
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2. Artificialintelligence and protected cultivation

Greenhouse production processes are already highlyautomated and controlled but,similar to what
is occurring in many sectors, Al systemsare now taking control to unprecedented levels. Because of
their potential ability to process large amounts of data and make tiny continuous adjustments, Al
systems are beginning to provide greenhouse operators with myriads of production-related
benefits (Treena Hein, 2021)

Al in protected horticulture can predict yield, ensure product quality from starting material to
harvest, help decide on the planning of time-to-marketand resources used and improve efficiency.
It can, therefore, contribute to the economic profit of growers and the sustainability of their
production. Both are important factors in industrialised production processes with large
greenhouse compartmentsat different locations, a lack of skilled labour and increased demand for
high-value food close to urban areas. In addition, the link between growing conditionsand shelf-life
processes needs to be elaborated, such that information from the end point (the consumer
acceptance)is used as feedback to alter growing conditions.

2.1. Plant phenotyping of horticultural crops and the use of crop
Sensors

Plant phenotyping canbe defined as the set of methodologiesand protocols used to measure plant
growth, architecture and composition with a certain accuracy and precision at different scales of
organisation, from plant organs to complete crop canopies. The term s often restricted to plant
breeding purposes, butit can also be used for plant production, specifically where measured plant
features are used for precise cropmaintenance and cropcontrolin a controlled environment, such
as (autonomous) greenhousesand vertical farms.

2.1.1. Digitalisation and artificial intelligence for crop morphology
measurements

The shape and morphology of plants is related to variety, the underlying genetics and
environmentalfactors (light, temperature,irrigation). Digital plant phenotypingrefers to the use of
computers for plant phenotyping wheredigital sensors areused to measure plant characteristics.

One ofthe most common digital phenotypingmethodologies is image analysis, where cameras are
used to record images and software is used to automatically extract the measurements from the
images to access plant morphology (the shape of a plant), in a reproducible and accurate way (Van
der Heijden & Polder, 2015).

Currently, many different typesof cameras are available for measuring important plant features to
characterise plant morphology. The most used camerais the RGB colour camera, which produces
images in thevisible spectrum, mimicking the human eye. To relate theimages to real dimensions,
3D information is often needed, which resulted in RGB camera-based 3D sensors. The Intel Real-
sense RGBD sensor is an affordable example of a RGB 3D sensor and is often used in horticultural
phenotyping, e.g., fortomatofruit detection and counting (Afonso et al., 2020; Fonteijn et al., 2021).
Other examples are LiDARsensors. All of these mightbecome low costbecause of the development
of smart phone camerasfor consumers.

In greenhouse crop production, the plants may be intertwined, and so they cannot be easily imaged
from all sides. This leads to occlusion and hampers the possibility ofimaging important plant traits
with a 3D camera. To overcome this problem, more advanced imaging solutions are needed. This
can either be achieved by a moving trolley systemwith a mounted camera,flying dronesinside the
greenhouseorarobotthatscans the plantwith a 3D camera from many viewpoints. Using artificial
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intelligence algorithms, the point clouds from different single viewpoints are converted into a
robust representation of the crop (Boogaard et al., 2020).

2.1.2. Digitalisation and artificial intelligence for crop physiology
performance

Next to plant morphology, plantphysiological processes are importantfor crop monitoring. In crop
production, photosynthesisin the leaves yields important biochemicals, such as sugars, starch,
chlorophyll and nutrients, that are transferred to the plant organs, flowers and fruits (Dieleman et
al.,2018a).

Therefore, measuring the efficiency of plant photosynthesis directly and non-destructively is a
desirable way for obtaining information on crop performance and for the early detection of
deviations from optimal physiological conditions. Technologies like chlorophyll fluorescence
imaging and thermalimaging arepromising, especially if they can be applied to other parts of crop
canopies, as well as individual leaves.

The chemical composition of the cropcan be determined by sampling leaves or fruits, sending them
to alaboratory and waiting fortheanalysis.Recentimaging spectroscopy was tested ona laboratory
scale, to determine the composition of biochemicals in crops, with promising results (Dieleman et
al., 2018b).

Imaging spectroscopy is an imaging technique for images taken using many narrow wavelength
bands over a range extending across the visible spectrum (from ultraviolet to shortwave infrared)
and compared to a standard camera, which only records red, green and blue light. In doing so, it
creates an extremely detailed image of the reflection of light on plants or other objects. Imaging
spectroscopy provides a lot of information on plant pigments, sugars, proteins, fats and water, as
well as their distribution over the leavesor organs.

Regions of interest, suchas the fruits or leaves, can be automatically extracted fromtheimage. This
opens the possibility of using this technique on mobile platforms (Mishra et al., 2020). Currently, a
lot of research and development effort is going into the development of spectral cameras, making
them less bulky, more robust, faster,and less costly.

Currently, Altechniques are exploredto extract useful information from the massive amountof data
collected by the spectral cameras (Mishra et al., 2021; Signoronietal., 2019).

These developments suggest an outlook for the future, providing more information on different
important plant features. Until now, most plant features could only be measured manually,
destructively and/or verylocally with scarce datapoints. Digitalisation of the measurementand use
of modern sensors and camera systems will help to collect more datapoints.Almethodswill largely
help in the interpretation of variable data output. Al algorithms will also help to transform and
combine the output of multiple sensorsinto usefulinformation for growers.

2.2. Autonomous growing and the use of Al

Greenhouse horticultureis characterised by relatively high operational efficiency involving powerful
managerial skills. However, demand for high vitamin and mineral food is increasing rapidly
(Rabobank, 2018; Tilman et al., 2011). The volatile market demands, resource prices, scarcity of
experienced labour (Brian, 2018), as well as uncertain weatherand environmental conditions, make
greenhouse farming a complex and risky endeavour. While encountering an environmental crisis
(United Nations, 2019), food production systems need to become more productive, resource-
efficient, and environmentally sustainable (Willett et al., 2019). The development of advanced and
autonomous greenhouse production systems aims at realising the best possible production
outcomes, considering quality and sustainability targets, with the uncertainties of resource
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availability, weather or market demand. The realisation of fully autonomous and intelligent
horticulture entails three major components: remote sensing, remote control, and hands-free
practices with robotisation.

2.2.1. Data for autonomous growing and production

Data regarding greenhouse production systems are becoming of increasing importance and are a
means of deeper understanding and efficient management of the complex biological dynamic
processes. Large and meaningful datasets about all growing aspects are sparse. The greenhouse
climateis relatively well-monitored, resultingin a time series with short intervals. However,manual,
subjective, time-consuming, often invasive, and costly measurements of traits of crop growth,
development, pests, and pathogens result in fragmented weekly or bi-weekly data points
(Bouzembrak et al., 2020). This implies considerable data uncertainty as a result of noise, missing
data, inconsistent formats, and non-standard collection protocols, among others (Lezoche et al,
2020). Investment into integrating diverse and unstructured data is required before any additional
meaningfulinsights are possible (Osinga et al., 2022).

Ongoing technological developments, computational power, and high-fidelity sensors offer new
opportunitiesfor automated, remote, and non-invasive sensing of growing parameters. The higher
spatial and temporal resolutionin the measurements and in the growing conditions allows for
interpretation of the system's variability at coarser and granular levels and offers opportunities for
sufficient information extraction towards more efficient adaptation of horticultural practices.

Al and machine learning can deal with the larger datasets and capture the nonlinear relationships
presentin the heterogeneousdata sourcesin greenhouses.

2.2.2. Machine learning for yield prediction and resource use efficiency

Scalable and generic machine learning analytics are currently used to complement expert-based
approaches for supporting yield predictions. Implementations of intelligent algorithms focus on
predictions ofindoor climate, microclimate (Ali&Hassanein, 2020; Takiet al., 2016, 2018), yield and
quality aspects of vegetable crops and flowers (Alhnaity et al., 2020; Reissig et al., 2021; Xiao et al,
2021), as well as growth and development indicators. Descriptive and predictive models (Partial
Least Squares (PLS)) (Lietal., 2016), Support Vector Machines (SVMs) (Fandel et al., 2021; Yan et al,
2010), Random Forests (RF) (Amir et al., 2021), Artificial Neural Networks (ANNs) (Ullah et al., 2020),
and k-nearest Neighbours (KNNs) have developed yield forecasting tools and decision support
systems (DSS) using predictors and outcomes from experience. In addition to ML, deep learning
(Long Short-Term Memory (LSTM)) (Alhnaity et al., n.d.; Ali & Hassanein, 2020; Moon et al., 2020),
Temporal Convolutional Networks (TCN) (Gong et al., 2021), and Multilayer Perceptron Neural
Networks (MLP-NN) (Petrakis et al., 2022) have also shown significant advantages in processing
time-series data to yield higher precision and better performance than other machine learning
methods.

Reinforcement learning finds applications in selecting actions, based on continuous feedback, to
maximise the system's performance. Currentapplications are aimedat learning the bestoperational
decision for day-to-day climate optimisation, with fewer being aimed at irrigation controland crop
management planning. Experiments for greenhouse control at a distance, using state-of-the-art
artificial intelligence algorithms, yielded promising results in the cultivation of cucumbers
(Hemming et al., 2019) and cherry tomatoes (Hemming et al., 2020), compared to references of
experience-based manual growing. Different Al technologies have been shown to have the
potential to contribute topredictingyield, as well as increasingyield and productqualityand, at the
sametime, saveresources suchas energy, water and nutrients.

12



Artificial intelligence in the agri-food sector

2.2.3. Deep learning for pest and pathogen management

In the future, the detection of plant pathogens and pests will become extremely important. Unless
it is known what a plant is suffering from, nothing can be done about it. The earlier pests and
pathogens areidentified, the easier it is to controlthem. Automated systemsare starting to play a
greater partin this (Bauriegel etal., 2011; Polder et al., 2014; Rumpfetal., 2010).

Automatic detection of pathogens in plants, as early as possible and withoutdamaging the plant, is
an approach that is gaining ever more attention in horticulture. In automatic detection, the basic
assumptionis that a diseased plant looks different from a healthy one. For example, leaves can have
subtle colour differences, which are often invisible to the human eye but can be captured using
techniques such as spectral imaging. Spectral imaging, combined with deep learning techniques
(described in the previous section), has the potential to become a powerful tool in pathogen
detectionin greenhousesand vertical farms.

Pest detection is often challenging because pests and their eggs are often located underneath the
plant canopy and are, therefore, difficult to detect. They are often very smalland showa very local
distribution. Crops in general might sufferfrommultiple pestsat the same time. Therefore, notonly
high-resolution detection butalso local and organism specific detection is required. High-resolution
imaging, in combination with deep learning techniques might have the potential for precision
farmingin greenhouses and vertical farms.

In both cases, large amounts of labelled images are required from different situations (locations,
seasons, crop varieties) to sufficiently train the deep learning algorithms. More smart training is
needed to overcomethelack of suchreal data and labelled images.

2.3. Digital twins and decision support for market-oriented
production

Today's high-tech greenhouses are equipped with different standard sensors for monitoring light,
temperature, humidity, and CO, and for actively controlling different actuators (e.g. lighting,
screening, heating, ventilation, cooling, CO, dosing, fogging, dehumidification, irrigation, and
fertiliser dosing) in order to control all growth factors important for crop production at every
moment. Today'sgrowers determine the climate, irrigation and crop management strategies based
on experience and define the setpoints for climate and irrigation control manually. Actuators then
operate based on the setpoints configured in a processing computer, while sensors give feedback
on measured data for the controlloop (Hemming et al., 2020).

The rapid pace of technological advancements, Al, cloud computing, and the uptake of the loT
produces anincreasing datastream at high spatial and temporal resolution, almostin real-time.

In smart horticulture, the greenhouse grower can monitor and control operations at a distance,
based on real-time digitalinformationinstead of direct observationsand tasks on-site.

Large amounts of data can be leveraged for the design and implementation of advanced models,
known as digital twins. A digital twin is equivalent to real-life objects mirroring the behaviour and
states over itslifetimein a virtual space (C. Verdouw et al., 2021). As a digital representation of actual
physical systems and technology integrators, digital twins offer a solution for complex systems
analysis and can act as decision support tools (Pylianidis et al., 2021). Digital twins areincreasingly
adopted in the manufacturing, automotive, and energyindustries (Caputoet al., 2019; Kritzinger et
al.,2018; Sivalingam et al., 2018).
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2.3.1. Digital twin of the greenhouse system

Dynamicclimate models have been developed (Vanthoor et al., 2011) which act as digital twins of
realgreenhouses. An overview of today's greenhouseclimate modelswas given in a previous study
(Lopez-Cruz et al., 2018). Since greenhouses differ from each other, an appropriate parameter
determination or calibration is necessary for each model, to act as a digital twin of an existing
greenhouse. These mechanistic digital twin models can be used to assist intelligent decision
support on climate control actions. Simulations of past or future scenarios provide information on
how different climate controlin the past could haveimproved crop production and which actions
arerequired to reacha certain crop production goalin the future. These models can also be coupled
with intelligent algorithmsto automatically determine climate setpoints,an action that is currently
performed manually by the grower. In order to control crop production by an automatedalgorithm,
mechanisticgreenhouse climate and crop models are coupled to resemble a real greenhouse.The
effects of changing set points can be tested on the digital twin and then, sent automatically to a
processing computer to control the differentactuators (Hemming et al., 2020).

2.3.2. Digital twin of the crop

The crop has a central role in every greenhouse production system. Crop management decisions
and actions are mostly taken by the greenhouse staff. Since experienced and well-trained crop
managers are scarce, crop simulation models can play a role in decision making. An overview of
greenhouse cropmodels and modelling approachesare given in otherstudies (Kuijpers et al., 2019;
Sarlikiotiet al., 2011). Crop models can be used as virtual representations of reality (Marshall-Colon
et al., 2017). They can be used to simulate different growing conditions and crop management
strategies and topredict theireffect on crop developmentand yield, as well as on fruit quality. Crop
models can help to understand the crop behaviour under different growing conditions and can
support the growerin making decisions. Additional sensors, monitoring crop status, can provide the
grower with furtherinformation asdescribedin the previous chapter. While automated greenhouse
climate controlalgorithms have already been developed and are widely introduced in modern high-
tech greenhouses, automated control procedures for cropstatus arestillin their infancy (Hemming
etal.,, 2020).

The available digital twins do not yet include all aspects for crop production. Typically, water and
nutrient managementcould be described in more detail. Crop quality aspectsare not described well
and pest and pathogenmanagement is lacking. More attention needsto be paid to the completion
of mechanisticdigital twins in future research.

2.3.3. Digital twins for decision support and Al

In general, complete digital twins (including greenhouse twins, the physical environment and crop
twins) can facilitate operational and tacticalmanagement decisions, strategic design decisions,and
predictive maintenance information. Preventive and corrective actions can be simulated and
evaluated in the digital environment before the final actual intervention. Such complete digital
twins are highly suitable for capturing available 'horticultural/green' knowledge and obtaining
artificial training datasetsfor future systemdesign and operation.

Convergence between digital and physical greenhouse production systems has been pursued asan
essential goal for data-driven horticulture. In the domain of process systems engineering,
Reinforcement Learning (RL) has been applied to resolve stochastic optimal control challenges with
the uncertainties of the highly non-linear and complex processes. As real-world datais augmented
in mechanistic algorithms that comprise the digital twin, the virtual environment can act as a
learning environment that generates adaptive control actions with statistical significance, instead
of the conventional hardcoded control logics of deterministic conditions.
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Deep RL networks require finite learning iterations. To explore the potential of such data-greedy
networks for horticultural challenges in a practical, timely and economically feasible manner, data
from the digital twins can be used as it is repeatable, inexpensive, and clean. In view of conditional,
highly automated and high-fidelity twins, interventions suggested in the digital twin can be directly
implemented without the grower's inspection or physical proximity. The twins are able to self-
diagnose and adapt to users' preferences (C. N.Verdouw et al., 2016). The benefits can result in cost
savings of recourses, improved product quality, faster actions with lower risks, and increased
production (Pylianidis et al., 2021; C. Verdouw et al., 2021).

2.4. ChallengesforAlin protected cultivation

2.4.1. Challenges of digitalisation in crop phenotyping

The current challenge is to give meaningful interpretation to sensordataand to transformthatinto
decision supportsystemsor even autonomous control for growers. To achieve this, high qualitydata
must be made available from multiple sources and connected. Data must be collected from robust,
reliable sensors with low maintenance and low costs. The more data points that can be collected,
the moreinformation is available for smaller areas, down to individual plants, and this contributes
to a higher resolution of information within a complexsystem of highly variable and fast changing
dynamic biological processes. Indeed, there are a number of important crop parameters and
processes that may ultimately affect Al algorithms, even if there are no data or insufficient data is
available (seen Annex 1). Knowledge about this maylead to interpretable Almodels thatalso come
closer toreflecting natural processes.

2.4.2. Challenges of artificial intelligence in autonomous growing

Given the complexity of greenhouse production, the use of different technological tools in an
integrated approach is the key for optimum crop management to reach optimum yield, while
minimising the use of resources, including the reduction of energy and water use and pest and
pathogen management.

Many developments have been demonstrated at a small laboratory scale or in a research
environment but translation and integration into commercial applications is lagging behind.
Currently, real data, especially on different aspects of crop performance, pests and pathogens, are
scarcely available or not publicly shared. Artificial data might be obtained by mechanistic crop
models but typically do not cover all growing aspects and often show a gap between the
mechanistic model (artificial data) and reality, especially in the description of real crop management.
Future research must focus on obtaining more knowledge from the digitalisation of crop
management and performance and translating that knowledge into more detailed mechanistic
crop models for better artificial training datasets. More labelled datasets should be created and
publicly shared, in the field of pest and pathogen management. In addition to this, better physical
based Al models must be developed, validated in applied trials and translated for commercial
situations.

More applications of robotisation in human-performed tasks will accelerate the realisation of fully
autonomous systems and can be a future source of data collection as well. A systems-thinking
approach is necessary for the development of integrated solutions. Monitoring, control, and
automation challenges in multi-faceted dynamic greenhouse systems must be addressed by
engaging experts in a holistic and multidisciplinary process for better understanding and tackling
ofinterrelationshipsand uncertainties.

Besides gaining more fundamental knowledge, more effort is needed for the validation of single
technological solutions and the integration of multiple solutions into a new integrated high
precision horticultural farming system. For that, more field-laboratories with a research-like high-

15



STOA | Panel for the Future of Science and Technology

tech data infrastructure, but close-to-practice crop growing system, are needed to facilitate such
technology validationand integration.

2.4.3. Challenges for digital twins in market-oriented production

Current challenges liein the high dimensionality of greenhouse growing systems due to the various
designs and various crops. Associated costs of the developmentof high fidelity digital twins are high
and a selection of minimum assets covering the market demands is required. A balance between
highly detailed information and more general twins can lower development costs.

Interactive interfaces with techniques of augmented and virtual reality make the twins more
coherent and attractive, although they require a high level of information infrastructure. More
research and development is needed in this field. The development of detailed digital twins to
describe reality, with a small gap between the twin and reality, is needed. In addition, user
acceptance and confidence is needed. More research on social aspects will help the development
ofiinteractive interfaces and user-friendly solutions.

Overcoming barriers for the application and policy options would require one or more
demonstrationsites where digital twins of a greenhouse crop productionfacility can be tested ina
safe environment for different crops and conditions. This would give growers confidence in the
power of data and artificial intelligence-driven control of crop production systems.

16



Artificial intelligence in the agri-food sector

3. Artificialintelligence in field crop production

The benefits of artificial intelligence (Al) for crop production may be focused, in general terms, on
making agricultural equipmentmoreintelligentand on making farm operations more efficient and
sustainable. Vehicle automationcan be enhanced with Alalgorithmsthat improve productivity and
safety. Farming operations will be improved by the deployment of Al-based expert systems,
providing support for decision making and paving the way for data-driven agriculture, if massive
field data becomeaccessible.

3.1. Vehicle automation and smart field operations

3.1.1. Status of intelligent equipment for agricultural production and the
advent of robots

An overview of smart and Al-driven machinery developments

Equipment manufacturers, the technological vanguard of field mechanisation, have made —and are
still making— a significant effort to evolve state-of-the-art vehicles into intelligent machines by the
introduction of smart behaviour, automation, and data-collection devices. By robotising existing
products, manufacturers have avoided designing machines from scratch while using the already-
validated features of popular models. This upgrade typically includes automatic steering or safety
functions that make daily work safer, less tiring and more efficient. Recent examples of such smart
tractors are the New Holland T4.110F (with an autonomousNHDrive (2018) navigation system), the
Kubota AgriRobo (based on Series-L tractors, with capabilities togenerate crop mapsand auto-steer
(2018)), and Yanmar driverlesstractors.

Eventhough the process of digitisation in agricultural equipmentstarted by furnishing top-of-the-
line models with sensors and processors (Figure 3.1) to acquire data and automate basic
functionalities, leading manufacturers have also contributed to the advancement of farm robotics
by conceiving, developing, and showing, in public events, eye-catching concept prototypes that
demonstrate their industrial leadership. These prototypes are fully autonomous vehicles withouta
driver's seat, which are similar in size to conventional tractors, and enabled to show technologically
advanced behaviours. However, as they are concept vehicles, they are not yet commercially
available and, therefore, unprepared to hit the market. The examples illustrated in Figure 3.1 shows
the concept vehicles launched by principal manufacturers.

The interest in agricultural robots has grown strongly in the last decade, although its worldwide
distribution is not uniform. The areas of application of roboticsin agriculture are (in decreasing order
of magnitude) field farming, dairy management indoor farming, horticulture, and others.

The globalagricultural robotics marketis anticipated toreach USD 8.82 billion by 2025 with a CAGR
of 24.7%. By comparing thegrowth with robotics market (CAGR 10.5%), the penetration of robots in
the field of agriculture will be stronger (Mege et al., 2019) . Overall, the USA has dominated the
market during the first two decades of the 21* century. For the next decade, however, the Asian
market is expected togrow at the highest rate due toincreasing government support and increasing
technologicaladvancement, whereasthe European market will expand at a lower rate. Unless there
isa strong Europeaninitiative, theever-growing market of farm robotics will be in the hands of Asia
and America for the next 20 years, resulting in a heavy tollto pay for European agribusinesses and
entrepreneurs.
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Figure 3.1 Conceptrobotic tractors: a) John Deere (1997);b) CNH (2016); c) Kubota (2020);
and d) John Deere (2019) (pictures by F.Rovira-Mas).
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Since a sustainable professional agricultureis not conceivable without machines, the smarter the
better, it seems that Europe cannot ignore the need to stimulate European technologicl
developmentin agriculture.Indeed, the stated goal of a greener agriculture, fromfield to fork, can
only be achieved in a competitive way when Europeanfarmers can make use of the advanced tools
that can be delivered by knowledge-driven equipment.

Automation and Al by large machinery manufacturers versus independent service consultancies

Manufacturers of agricultural equipment have devoted important resources to develop intelligent
machines that may substitute conventional tractors soon, leading to the advanced concepts in
Figure 3.1. However, the complexity and size of such machines has prevented their commercial
release hitherto, due toreliability, safety,and legal reasons. Manufacturersthemselves are reluctant
to launch forward-looking products that might get involved in an accident and, thus, jeopardise
their long-time reputation. This situation has resulted in the sprouting up of small enterprises that
have focused their resources on solving a specific problem with robotics. Most of themare —or have
initially been- start-up or spin-off companies, which have circumvented safety issues by redudng
the size of robotic platforms. By doing so, not only have they diminished the risks inherent in
automation in open fields, but they have also reduced the environmental footprint, by changing
conventional diesel engines for electric propulsion systems. In an attractive business model end-
users do not need to worry about machine maintenance and liability. It may be that the successful
deployment of robotic solutions occurs before fullautonomy becomesa practical reality.
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Another approach can be that mechanised activities on farms, and in the postharvest, are
increasingly offered as a service by companies or by cooperatives ratherthanon-farm ownership of
the equipment. This can result in a rapid and continuous modernisation of the equipment that is
adapted as new needs arise.

3.1.2. Crop health management

Crop health management involves detectionand actuation. Detection might be furtherenriched by
prediction but the extreme complexity of weeds, disease and pest dynamics has not resulted in
many widespread commercial solutions yet. However, it is on the agenda of many corporations,
such as Bayer, which has made large investments to develop prediction toolsfor mobile telephones
(Digital Farming | Bayer Global, 2022) since 2017. Smart actuation, by delivering an adjusted spray
rate only to places where weeds are located, has recently seen successful solutions with a
combination of artificial intelligence and computer vision (https://bluerivertechnology.com). The
following examples provide a few representative cases of advanced machines for the delivery of
crop protection products or the mechanical removal of weeds, but many more are on the way as
new smart machinesare continuously emerging.

Is smart crop health management possible with limited available molecules?

Crop protectionis afundamental stage in food production and it may become a serious problem if
it is mishandled; its relevance deserves a few lines of discussion. To begin with, weeds and pests
pose different scenarios and require different solutions. Surprisingly, in Europe this carries
geopolitical implications. Northern states, with milder summers, more rain, and extensive
production are mostly affected by losses caused by weeds. Southern states, with the changing
climate increasing the occurrence of heatwaves and intensive production of specialty crops, are
mostly hit by devastating pest invasions or diseases spread by pests (Schneider et al., 2020). As a
result, when a common policy for the reduction of legal crop protection productsis proposed, a
careful analysis should be conducted for all users, from cereals to high value fruits. For example, it
remains the case that markets and consumers prefer perfect fruits, with no tiny blemishes in the
skin. In a climate change context,immaculate fruits cannot be produced without practical resources
to combat pests and diseases. Research resources can help professional chemists developmolecules
that are totally respectful to the environment, in combination with equipmentdevelopers that may
constructintelligent sprayers (Ortiet al., 2022), capable of delivering the right amount of product to
the targeted leaves and reducing drifts to the atmosphere and drips to the soil. Weed control can
also be expected from physical technologies, like the selective electrocution of undesired plants.
Such environmentally friendly equipment can be implemented after sufficient testing under many
different conditions. The data gathered from such extensive tests are the basis for Al-based
algorithms, which are implementedin smartfield equipment. Thecompetitive agriculture of the 21¢
century requires smarter machinesandcleaner products; feeding 9.5 billion people by 2050, without
state-of-the-art machinesand withouteffective products, seems unfeasible.

Robotic solutions for mechanical weeding

The moratorium on glyphosate, set by many European states, has motivated the return of
mechanical weeding which, in turn, has spurred on the development of small-size weeding robots
powered by electric drives. The reduced size of these robotic platforms has mitigated some of the
objections related to reliability and safety. In addition, the fact that these solutions are highly
specialised limits the system complexity, as only one task (weeding) is performed at a time. Figure
3.2(a) shows robot Oz with a mass of 150 kg (Naio Technologies, France) for mechanical weeding in
horticulture, with 70 units sold in 2018, most of them in France. Figure 3.2(b) shows the Vitirover
(Saint-Emilion, France) for mechanical weeding in vineyards. It represents a business model based
on services, by which a fleet of robots executes the requested weeding task according to the
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instructions set by the in-field operator assigned by the company. This model releases the growers
from operating and maintainingthe robots because thatis done by the company.

Figure 3.2 Robots for mechanical weeding: courtesy of a) Naio Technologies: Oz b) Vitirover.

Smart weed control by spraying

The elimination of weeds with smart spraying requires the application of herbicides only where
weeds are present, avoiding any sprayon the soil or thecultivated plants. Artificial intelligence tools
like machine learning techniques, and deep learning in particular, have significantly amplified the
scope of computer vision and improved the detection success of weeds in crops. The US company
Blue River Technology developed the technology 'see & spray' to remove weeds in lettuce
production with machine vision. This technology gained a lot of attention, after the acquisition of
the company by the leading manufacturer John Deere. (Our Mission - Welcome | Blue River
Technology, n.d.)

Figure 3.3 Autonomous blast sprayers: a) GUSS (USA); and b) Jacto JAV ll, Brazil (with
permission).

Data-driven precise spraying robots for high-value crops set in orchards and groves

The delivery of crop protection products to fruit trees requires moving a tank with spray liquid
around thefields and the actuation of a turbine thatforcesairflow to transport spray droplets to the
targeted trees. These requirements pose a minimum threshold for power and size, complicating
automation and the use of electrical power. To autonomously guide the large sprayer in Figure
3.3(a), he American firm GUSS (Global Unmanned Spray System, Kingsburg, CA, USA) possesses a
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fleet of large autonomously guided sprayersthat can be stopped by aremotely controlled switch.
A supervising team (stationed in a van nearby) follows the operation, granting both safety and
quality of work. Similarly, Figure 3.3(b shows the Brazilian version of this idea with a sprayer built by
Jacto (Pompéia, SP, Brazil). The autonomous vehicle can reach 15 km/h and discontinues spraying
when vegetation is absent.

3.1.3. Barriers, limitations, and risks for future expansion

Alleviate high cost of advanced equipment by sharing

The successful deploymentof Althroughoutagricultural equipment, with the purpose of making it
become'intelligent' and efficient to execute automated functions, may be threatened and hindered
by the following challenges, which can limit or even ruin their practical implementation and
acceptance. The higher cost inherent in advanced technology, monetary cost of purchasing and
time cost of learning, may be compensated by equipment sharing in farmer associations or
cooperatives, but there are still many professionals who are not willing to share their equipment.
Service providers have been effective in the introduction of sophisticated equipment. Nevertheless,
the introduction of digital technologies that can embody Al applications is not always linked to
unaffordable costs of machinery or the size of the holding. What may hinder a larger expansion of
thesetechnologies stemsfrom other problems, such as the complexity of solutions, the age of the
farmers, and uncertainty about the expected results or fear about a potential lack of returns. The
following paragraphsexamine some of these barriers more closely.

Figure 3.4 Age classes of farm managers in Europe in 2016 (includes UK)
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The challenge of an aging farming population

Eurostat statistics on farmers and the farm labour force show that, in Europe, farm managers are
typically male and relatively old. Seven in every ten (71.5%) farm managerson the EU's 10.5 million
holdings were male and a majority (57.9%) were 55 years of age or more. Only about one in every
ten (10.6%) farm managers was a young farmer under the age of 40 (see Figure 3.4) and this share
was even lower among female farmers (8.6%) (Farmers and the Agricultural Labour Force - Eurostat,
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2018). The share of older farmers varies between countries but, in general, older farmers work on
smaller farms, in terms of economicssize.

Most farm managers in the EU only have practical experience; this was the case for seven in every
ten (68.3%) ofthem in 2016. Less than onein ten (9.1%) farm managers hadfull agricultural training
and therest (22.6%) had basicagricultural training. In some member states, the level of agricultural
trainingamong farmmanagerswas particularly low.

The age structures and the level of agricultural training underline the need to encourage a new
generation of farmersthatare well trained, including the digital training that allows them to get the
most benefit from advancedtechnologies in hardware and software.

However, human resources may become animportantbarrier forthe wide disseminationand actual
implementation of digital applications advanced solutions relying on Al such as automation,
robotics, and decision supportsystems. Twenty first century growers need professionalinstruction
in the use of digital tools and vehicle operation. The fact that theaverage age of farmersis very high
at present (makesa rapid transition quite difficult. An articulated extension network will be necessary
to implant both novel technologies and new production concepts, such as sustainability and
circularity. With the farms workforce in one track, and the policy-making representatives in the
other, they willnot find a meeting point unless the right intermediaryagents are properly involved
and endowed with the required resources. Education and training is, as a result, the key for a
seamless transitiontowards the sustainable production of food, feed, and fibre in the digital age.

Figure 3.5 Selling price in Spain for citrus and dessertgrapes (2000-2019)
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Lack of available labour makes crops disappear

Labour costs for the production of fruit in the USA often ranges between 40% and 60% of total
production costs (Burks&Schmouldt, 2008), and the situation in Europe is quite similar, According
to a recent study by the Valencian Association of Agricultural Producers (AVA-ASAJA), the average
production costs of citrus fruits in Spain reached 0.23 €/ kg for oranges, 0.28 € / kg for mandarins,
and 0.20 € / kg for lemons in 2020. In addition to labour, farmers require fuel for machinery, good
quality seeds, fertilisers, irrigation water, and crop protection products, whose costis constantly on
the rise due to tightening restrictions motivated by environmental regulations. These production
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costs have been increasing over recent decades, while farmers' profits have remained stagnant, or
even decreased, for many products. Such low profitability has resulted in the younger generation
giving up on agricultural activities as career opportunities. This has been the case in citrus
production in Eastern Spain. Figure 3.5 establishes a comparison among selling prices for oranges,
mandarins, and table grapes in Spain between 2000 and 2019. While grape prices have been
increasing with consumer price indices, the prices of mandarins and oranges have been mostly
stagnant over the last 20 years. This divergence, between increasing prices for production inputs
(such as labour, fuel, or chemicals) and flat prices for produce values, has put the Spanish citrus
sector under severepressure.

Automation replaces labour?

The vision of robotics as the ultimate link in agricultural mechanisation, by which not only the
physicaldrudgeryof farmers, butalso theirmental effort in decision making, willbe complemented
by Al-driven intelligent machines, seems natural within the current technological trends. However,
there is an always-present anxiety that remains unsettled, and which has its roots in the early
beginnings of the industrial revolution:'Arefarming robots goingto drastically reduce employment
in agriculture taking farmers to extinction?' This is a non-trivial question that should be addressed
with care, to avoid drawing unfounded conclusions. If the goal of digital agriculture is to ensure the
sustainability of agricultural activities, it is obvious that the idea is not the elimination of farmers but
just the opposite; grant them long-term permanency and welfare. The analysis of the impact from
introducing robots in agriculturalfields must rely on the use of data from trustworthy sources and
the fact that the specific case of agriculture has needs, with problems and background conditions
different to other industrial sectors. Unfortunately, given the novelty of farm robotics, thereare not
many sources available.

Use of robotics creates opportunities for crops and workers

In 1910, 18% of the USA's workforce was employed in agriculture. By 2012, this figure had decreased
to 1%, mostly due to mechanisation (Stone, 2014), with similar trends in Western Europe. What
happened to all that labour force? As mechanisation became established, the primary sector
readjusted and many workers who could no longer find a job in the field were employed in the
(agricultural) machinery manufacturing industry. The straightforward cause and effect relationship
between the extinction of certain jobs and the rise of unemploymentrates is not always valid
because we should always take into consideration the elasticity in the market and its innovation
capacity. As a matter of fact, data might prove the opposite. In the case of robots, the International
Federation of Robotics declared that Japan had 323 robots per 10,000 workers in 2013, which is
significantly higher than other industrialised countries like the USA, where the rate was 152 robots
per 10,000 workers for the same year. Surprisingly, the unemployment rate for Japan in 2013 was
4%, which is much lower than most of the countries with clearly less automationimplanted in their
industry (Jordan, 2016). For instance, the manufacturing industry in Spain reported 160 robots per
10,000 workers in 2016, with an unemployment rate of 18.6% for that year. Nonetheless, each
specific sector carries its own distinctive features and to draw meaningful conclusions, this analysis
should concentrate on the agri-food sector. According to Burks and Schmouldt (2008), the
introduction of robotics in agriculture can create more employment in the overalleconomy thanit
might initially destroy. It is not realistic to only consider the substitution of workers by machines
because thereare manycropsfor whose production there is not much skilled labouravailable, such
as pruningin French vineyards, harvesting strawberriesin Spain, or picking asparagus in Germany.
For thesessituations, the dilemma is either automation or disappearance of the crop, with a strong
impact on small family-owned businesses, which are dominantin Europe. On the other hand, the
digitisation of agriculture can and willinvolve the creation of novel companies to manufacture and
maintain intelligent equipment, provide consulting for data analysisand decision making, or assure
the presence of extension agents to instruct end-users about digital tools. Indeed, end users will
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need assistance in operating such equipment, eitherbecause of training needs orbecause they may
take insufficient time to read manuals or watch tutorials. As stated by Brynjolfsson and McAfee
(2014), the progress conveyed through the digital revolution may enrich our lives as never before
but at the expense of acquiring the basic knowledge that will allow the effective use of new
advances.In thisregard, 21 century farmers will have to cultivate a set of new skills, in accordance
with today's available technology, as well as that to be developed soon. Agricultural robots may
carry out the toughest taskson the farm, those that nobody wants to get involved with, and which,
as a result, often end up in the hands of immigrants. However,, what is 'rough' for locals is equally
rough for immigrants. These hard tasks have a dissuasive effect on young people at the time of
starting an agriculturalbusiness. It is likely that, in some cases, one will see robot-assisted activities
that take the drudgery outof several tasks.

However, not every task in agricultural production is physically demanding and harsh; there will
always be a need for planning, management, decisionmaking, and strategy envisioning, for whose
optimal delivery the producerremains unreplaceable. After all the evidence accumulated in the first
two decades of the 21 century and despite the opportunities already introduced -and yet to be
deployed- for the advanced management of modern agriculture, there is still a direct rejection of
these technologies by a smallgroup of practitioners, who feel the threat of progress to their status
quo. This hostile opposition totechnologyis notnew at all; it firstappeared in England in 1785 when
the first weaving machine was built. The same happened again in 1837, with the development of
the steel plough by blacksmith John Deere because the steel, apparently, ruined soil fertility. Even
today, thereis a hesitation to embrace, or willingly reject, technology, including agricultural robots.
The appearance of anti-roboticgroupsis possible, in the same way there are anti-vaccine groups.

3.2. Expert systemsand decision support applications

3.2.1. The cycle of data management

Precision agriculture as a start

The concept of Agriculture 5.0includes the farms that are following Precision Agriculture principles
and using equipment with advanced features, such as variable rate technologies or decision support
systems, often involving the use of robots and Al (Zambon et al., 2019). Raw measurements from
crops need to be efficiently processed such that numbers or images unambiguously turn into
valuableinformationfor farmers. Crop management based on field data evolved with the advent of
Precision Agriculture but it has been deeply transformedby the presentdigital era.

Farmers' observations or objective measurements

In traditionalfarms, where sensing technology has not arrived yet, field management relies on the
visual inspection of crop development to diagnose problems and make the required correcting
decisions. This approach requires field experience and is subjective because information is
perceived through the eyes of farmers. Alternatively, in farms where advanced technology is
available, field management may be systematically structured according to the operating cycle
givenin Figure 3.6 (Saiz-Rubio & Rovira-Mds, 2020). This managementsystem is based on objective
field data and smart decision-making, in what is known as data-driven agriculture. In particular, it
starts from the actual crop to manage, taking advantage of its inner variability, both spatial and
temporal. The platform refers to the physical means with which informationis acquired, mostly non-
invasive sensorsthroughwhich objective data are obtained. Dataincludes the informationdirectly
retrieved from the measurements taken fromthe crop, soil, orambientconditions.
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From data to decisions to response data

The nexus between the data and the decision stage involves filtering routines and Al algorithms for
simplifying and interpretingthe data, to help the grower make optimal decisions. Finally, actuation
refers to the physical execution of an action commandedby the decision systemand it requires the
use of advanced equipment that can receive orders from a computerised control unit. Each action
takes place during crop growth; therefore, the cycle in Figure 3.6 starts again when the response of
thecropisregistered by sensorsand the loop continues systematically, until harvesting time, which
marks the end of the crop life cycle.

Figure 3.6 Cycle of data management
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Source: Saiz-Rubio & Rovira-Mas, 2020

3.2.2. The lack of massive data: route to Big Data conditions
How to get the high-density data available

One of the fundamental differences between traditional and modern farming, apart from the
mechanisation level, is the data collected directly from the crops. In traditional farms, where growers
judge by visual assessment, decisionsare relative and subjective. Modern farming, on the contrary,
focuses decision making on quantitative data to grant objective decisions. However, the excess of
data can become a challenge to cope with, as vital information may be masked by noise. The
popularisationof the global positioning system (GPS) and precision farming, in conjunction with the
availability of affordable sensors, has revolutionised the way farms are managed; an important,
central role is played by field data in decision making. Nevertheless, despite the increased interest
in data-driven agriculture (Saiz-Rubio &Rovira-Mas, 2020), the reality in farms is far from being big
data driven, mostly due to the lack of field data with the proper density, precision, and frequency. In
fact, the acquisition of field data is often based on manual sampling, such asthe assessment of fruit
maturity to determine harvesting time. These manual data acquisitions can only be performed a
limited number of times perseason, for practicaland economic reasons, resulting in scanty sampling
thatalsorisks introducingthe subjectivity of each operator.

Where are the best available data on the crops

Aninitial effort to make the acquisition of field datamore efficient has led to remote sensing images,
either from Earth observationsatellites or airplanes—-bothmannedand unmanned- equipped with
sophisticated optical systems. However, some physiological phenomena mostly depend on the
environmental conditions surrounding each plant. The lateral portion of trees, where fruits are
typically carried, often provides richer information than zenithal measurements, e.g., the relative
humidity enveloping a tree canopy for estimating its vapour pressure deficit. Thus, it is often more
convenient to monitor the status of each tree than airborne images taken far above canopies.
Unfortunately, hiring an operator for monitoringorchards is not cost-effective either. The EU-funded
VineScout project (2017-2020) faced the challenge of data collection in vineyards by designingand
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building a robot to systematically monitor grape vines and their surrounding environment. In
particular, the VineScout robot (Figure 3.7(a)) senses the right side of the trellised canopies every
two rows, acquiring leaf and air temperature, relative humidity, atmospheric pressure, and the
spectralindices NDVI(Normalized Difference Vegetation Index) and PRI (Photochemical Reflectance
Index), with the purpose of better understanding and tracking the water statusand growth rate of
thevines.Figure 3.7 shows the robot mapping a commercial vineyard at high resolution with speeds
around 2km/h, to achieve massive sampling. Forthevineyardin Figure 3.7(b), forinstance, the robot
scanned 14rows in 71 minutes to coveran areaof 0.65 ha with a map of 14,856 data points, yielding
a'density' of 2.3 points per m? (Rovira-Maset al., 2021). For the sake of comparison between massive
sampling and regular sampling, water status was manually measured for the monitored rows with
a pressure chamber to perform ground truth correlations, distributing 36 measurements over the
0.65 ha, which resultedin a data density of 0.0056 points per m? Although the robot can navigate
without GPS (Rovira-Mas etal., 2020), global positioningis necessary for building the high-resolution
crop maps.

Figure 3.7 VineScout robot for monitoring olive groves (a) and vineyards (b) at high
resolution. (source F.Rovira-Mas)

3.3. Intelligent crop planning
3.3.1. Onfarm planning

Lately, technologies such as the use of Big Data, Cloud Computing, Remote Sensing, Agri-robotics
andthelInternet of Things (IoT) sensors, combinedwith the use of Al, areincreasingly used in every
aspect of the agri-food supply chain (AFSC). These technologies have contributed to the
accumulation of an explosive volume of data and informationand thetransition to the new farming
era, the so-called Agriculture 4.0 (de Clercq et al., 2018; Liu et al., 2020; Zambon et al., 2019; Zhai et
al., 2020). Nevertheless, the level of the exploitation of these data in the agricultural sector is still
relatively low (Wolfert et al., 2017; Kamilaris et al., 2017), neglecting a tremendous opportunity for
disruptive data-driveninnovation with regards to more optimised and sustainable production and
consumption practices in the long-term.

Data analytics for agri-food supply estimation

In this light, big data analytics can play a key role in the transformation of data intoadded value for
agri-food stakeholders, throughits capacity toefficiently aggregate, processand visualise largeand
complex datasets.Despite being an emerging technology, big data is a domain that is expected to
have a high impact in the organisation of this new agricultural era. By leveraging high-volume,
multi-source, real-time and historical data with processing, forecasting, and tracking capabilities, it
is expected that farm management and operations will change drastically, promoting the
continuous improvement of business models. Beyond more common applications, such as
optimising production yield by finding optimal parameters (e.g. temperature and rainfall) based on

26



Artificial intelligence in the agri-food sector

large, historical, multi-site datasets (Majumderetal., 2019) , big data analytics also opens doors for
other more complexand less common cases. An example of this is the estimation of food availability
in developing countries, to address the challenge of sustainable food security, enabled by the
analysis of land use and production data from more than 13,000 farm households, across multiple
sitesin 17 countries across sub-Saharan Africa (Frelat et al., 2016).

Machine learning and integrated farm planning

Combined with cloud computing and loT, Al (and particularly machine learning (ML)) has been
identified as one of the main driving forces towards integrated farm planning. Recent studies
highlight ML as being one of the most promising techniques currently being explored in this regard
(Kamilaris et al., 2017; Liu et al., 2020). ML has applications in the areas of food availability and
security, weeds, soil, crop and animal monitoringand management, as well as weather and climate
change. ML algorithms have been used tomaximise crop yield and minimise input costs, since they
can identify complex patterns, trends and relationships in the multidimensional, heterogeneous
agriculturaldata. They can make accurate predictionsand providea strong foundation for improved
agricultural decision-making and operations management (Shi et al., 2019). In a recent review by
Liakos et al. (2018), it is mentioned that 61% of published agriculture sector articles using ML
approaches were from crop management, 19% from livestock management, 10% from soil
management and 10% from a perspective of water management.Within Agriculture 4.0, a number
of different approaches are emerging from the scientific community, including privacy-preserving
mechanisms to deal with the cyber-security and privacy issues of the digital era.

Decision support systems

A Decision Support System (DSS) is an indispensable tool in many different sectors and the
agriculturalsector is a perfect candidate, since agricultural activities are often complex (due to the
many physical, chemical, and biological processes involved) and require alarge amount of data to
be processed for proper management. A DSS is a software mechanism which aids an end-user to
easily and quickly leverage complex data to improve decision-making processes. Hence, both raw
dataand the output of analytical tools can be converted into knowledge and presented througha
user interface in an interpretable way. A DSS can help decision-makers make more effective
decisions, when dealing with poorly defined and complexdata. However, one of the characteristics
of an agricultural DSS is that, typically, it has a low autonomy level. Given that, farmers have total
responsibility for taking the final decisions (i.e. actions) by validating (or not) the
suggestions/instructions provided by the DSS (Zhai, et al., 2020) which, in turn, can show some kind
of autonomy level within clearly defined systemboundaries.

3.3.2. Planning by producer organisations or cooperatives
Market forecasting

Market demand fluctuates quite rapidly, which means that agri-food companies must be one step
aheadto actin time.Facing this, companies have been pursuing predictive analytics techniques to
improve their supply chains and optimise marketing operations. Due to its ability to effectively
discover trends and patterns in large datasets, ML methods allow predictive analysis that can
support not only agricultural operations, but also retail (Huber & Stuckenschmidt, 2020). Thus,
considering financial constraints to make an accurate market demand forecast,and an automated
inventory control system is a game changer for the retail sector. In addition, ML methods can also
predict market prices and the tendencies regarding the agri-food sectorthat will be in the pipeline
soon, by understanding the behaviour of market demand. With this, Al-based techniques have
become very popularamong producer organisations and cooperatives, to efficiently boost supply
chain performance, increase productivity and profit, optimise stock management and resource
allocation, reduce costs and wasteand increase customer satisfaction.
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Reliable and trusted food supply

It is known that, in recent years, consumers have been increasingly concerned with how agrifood
products are produced, handled, packaged, stored and distributed, in the same way they want to
know the authenticity and origin/traceability of the same products. Additionally,global shocks and
disruptions in supply chains (e.g. those caused by the COVID-19 pandemic) have made it evident
thatrobust agri-food systems are crucial. There is a huge need for a resilient, functional, equitable,
fairand transparent AFSC that will benefit farmers, involved stakeholders (including the processing
industry, suppliers, retailers, etc.) and consumers. Besides that, a sustainable circular bio-economy
can serve to mitigate the socio-economicimpacts caused by global crises, especially with regard to
food security and safety for thosein greater need.

Logistics from producer to consumer

Therefore, the logistics domain is also of great importance within the context of agricultural
organisations and cooperatives and refers to the physical flow of entities and related information
from producer to consumer,in order tosatisfy consumer demand (Talavera et al., 2017). It is present
in all stages of the'Farm to Fork' journey and each stage has the challenge of maintaining product
integrity, efficiency and quality (Nukala et al., 2016). Until they reach the 'Fork’, agri-food products
are exposed to different conditions that can potentially degrade their quality. Lack of, or weak,
temperature and/or humidity control, incorrect physical handling and delays, as well as the
increasing threats to food security and the inevitable food loss and waste, have led to the
tremendous need for a traceability system. These systems are considered an important quality
control mechanism that guarantees the safety of agri-food products, throughout the cycle from
farming to consumption (Prasharetal., 2020).

Internet of Things and wireless sensor networks

In this regard, advances in Agriculture 5.0 have provided new opportunities for the digitalisation
and automation of the entire AFSC, by promoting loT-related applications and data-oriented
technologies and offering new and effective services for end-users. Forinstance, loT-based systems
using WSNs can provide continuous, automatic and up-to-date information on crop product
storage, allowing managers to make decisions about what products should be given priority to be
handled and/or removed, in order to avoid losses or deterioration.

Blockchain and transaction integrity

Blockchain, the distributed ledgertechnology behind Bitcoin andother cryptocurrencies, alsohas a
bigrolein AFSC management, as it can be used toknow who is performing which actions,including
the time and location of the same actions. Blockchain can provide end-to-end traceability and
integrity of alltransactionsand ensure that allinformation produced alongthe AFSCis auditable, if
all agri-food parties implement transparency measures in their processes (Kamilaris et al., 2017;
Wolfert et al., 2017). Transport operators will be able to monitor important parameters (time,
temperature, humidity, etc.) inside the containers in real-time, by usingadequate sensors. Whenever
a value exceeds the established safety limit, an alarm is immediately triggered (Galvez et al., 2018;
Kshetri, 2018). In addition, it is possible to predict delays in product delivery and, in this way, react
through active cooling or decide on a faster route. In turn, by analysing the transportation data
reports, retailers will be able to accept or reject the goods, which is of great importance when
dealing with sensitive and refrigerated products. In addition, they will be able to manage the goods
stock based on their current condition. Blockchain can also be used to prevent food fraud, which
causes enormous economic lossesand reduces consumer trust, by trackingand authenticating the
AFSCand understanding the provenance of products (Galvez et al., 2018).
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Detect and predict problems

If the right tools for monitoring are used, allied with advanced data analysis, it is possible to
accurately detect problems in the AFSC, predict them beforethey occurand make fasterand better
decisions, toimprove theresilience and sustainability of AFSCs. In fact, Agriculture 4.0 allows more
intelligent managementof AFSCs, with the vision of reinforcing logistical efficiency, addressing food
safety and security, mitigating inherent risks and complying with certifications and regulations.
Additionally, it aims to promote provenance traceability and food authentication, increasing the
relationship between stakeholders and ensuring consumer confidence that the products are
genuine and of high quality, among otheraspects.

3.4. Challengesof Alin field crop production

3.4.1. Infrastructure resources required

The successfulimplementation of Altechniquesin daily operationsat field level requires important
human and technical resources. Many Alalgorithms are not practical, either because they demand
an unavailable, high flow of field data, or because they require high computational power. The real
time transmission of field data to the cloud is not ensured in most rural areas where crops are
typically grown and 5G or the internet, if available, can be unreliable. On-board computation and
data storageis a convenient way to alleviate expensive infrastructure requirements while avoiding
the loss of critical field data. Technical resources, therefore, may be demanding but cost-effective
solutions are alreadyaccessible.

3.4.2. System wide challenges

Some of the challenges of Alin agriculture can be framed at a system-wide level, meaning that they
encompass general characteristics of the system that do not pertain to a singular layer of the
architecture at an individual level, but should emerge from the system. These include aspects such
as the scalability of the solutions and their flexibility, meaning the capacity to adapt to changing
conditions or requirements dynamically, in a robustmanner. These aspects, along with the real-time
capability of the service layer, are crucial in coping with the real-time and ever-changing dynamics
of the global economy. As the system grows and adapts, it can also becomeincreasingly complex,
making itimportant to find ways to keep thiscomplexity in check.

3.4.3. System dynamics and continuous improvement

A major point that relates to this system dynamics is the aspect of continuous improvement and
engineering, which is enabled by the system's combination of real-time data and capacity to learn
and adapt through Al. New approaches should leverage data collected in real-time, not only to
ensure that the system performance can be improved but, most of all, that it can be at least
maintained in the face of thesedynamic conditionsinherent toreal-world environments. In the case
of ML applications, this entails dealing with aspects such as concept drift, which refers to instances
in which the distributions of data may have changed from those with which models were initially
trained. As such, integrated approaches for seamless and automated monitoring, adaptation and
validation of deployed solutions should be explored.

3.4.4. Concept drift

The use and modification of innovative deep learning (DL) techniques, suchas the different variates
of Autoencoders (AE) or Generative Adversarial Networks (GANs) could, potentially, be a way to
reduce the aspect of concept drift. This can be succeeded by the augmentation of the training set
with data that are generated by the aforementioned DL models and that can be processed in such
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a way that they will include possibly distractive parameters or noise and will expand the range of
thetraining set distribution.

3.4.5. Model generalisations or overfitting?

Integration into deep learningalgorithms hasrecently been introduced in the field of agricultural Al
techniques. However, the attention mechanism applied in most cases has been case-specific, with
a lack of model generalisation; only using a single attention mechanism can potentially cause
overfitting of the model. A multi-head attention mechanism can establish a long-distance
dependence of the inputimage, providing differentattention to different positionsof theimage.

3.4.6. A convincing reliability

Farmers worry about the reliability of the machines, in terms of their correct operation, as well as
reliable mechanics and electronics. Indeed, they are afraid thata breakdown at a key moment in the
season (for example, at harvest time) puts partor the whole crop atrisk. Here, testing sandboxes for
integrated mechanical, electronicand Al systems can increase confidence.

3.4.7. Training the farming population

The age structure and the level of agricultural training underline the need to encourage a new
generation of farmers that are well trained, including the digital training that allows them to fully
profit from theadvanced hardware and software technologies. Demonstration activities and small
field trials can help to convince farmers. Furthermore, demonstrators where the weaknesses or
failure risks are shown are also necessary as learning tools before a full scale deployment can be
successful.

3.4.8. Mechanisation as a service

Custom operatorsor specialised machinery operatorsshould alsobe madeaware of the importance
of the data being collected during their field work. Every operator should be able to explain his
qualifications and the type of service he delivers to his customers.

3.4.9. Crop protection

The efficiency of crop protection can be improved by the intensive use of aerial images, ground
based information, weather conditions and forecasts, as well as a history of prevalencein the field.
In epidemiological models for weeds, pests and diseases, Albased on data can contribute to more
sustainable crop protection.
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4. Al in soil and water managementand irrigation

Soiland water management hasa numberof new challenges. Climate change has madethe weather
more unpredictable and, therefore, forecasting is becoming more difficult. Periods with stormsand
high rainfall alternate with dry periods. More crop stress, caused by higher temperatures or by
excessive rain or floods, is to be expected. Heat resistant varieties are one of the options but
intelligent long term (longer than one growing season) water management is another necessity.
During summers with high temperatures, flooding and the submergence of crops during longer
periods can be detrimental. At the same time, temperatures are higher and more droughts are
expected; the crops need more water, either fed by rain or irrigation.

Challenges from a crop growth perspective are important, but the role of the agricultural land in
groundwater recharge and flood reduction also needs to be optimised as an ecosystem service to
society.

Using Al, we can combine real-time information from sensors, weather forecasts and crop soil
modelling. In addition, spatial information from drones and satellites is accessible. In this way,
climate adaptive management becomes feasible by taking into consideration the temporal and
spatial variability of the soil and crop status in the field. It allows fast responses and reacts proactively
to forecasts.

Finally, Al decision support should be a combinationof real-time sensorsfeeding dataand imagery
into crop growth and soil water balance models forthe most optimal decisions. In general, the local
level focusses on the farm and crop productivity, while the water resources require a regional
dimension at the level of entire river basins and aquifers.

4.1. Water budgeting atlocal orregional level

4.1.1. Real-time crop stress identification and prevention

A whole range of sensors can now be connected by the Internet of Things (IoT). Small solar panels
and widespread internet coverageloT has become feasible in the field, even at a distance from
farmhouses and main power supplies. Although prices for the loT are affordable, the sensors
themselves are stillexpensive and in a dense network. Alneeds to integrate this continuous stream
ofinformation into a decision support system.

There is a lot of tradition and experience with irrigation scheduling in many parts of Europe,
especially in the South (e.g. Spain) (Garcia et al., 2020). Planning irrigation applications is normally
based on crop evapotranspiration (ET) estimations, rainfall measurements and soil water
accounting, ideally updated by soil water sensing and weather forecasting. Farming tendsto aim at
the highest productivity, which often leads to supplying the average crop with more thanthe total
water requirement. Large efficiency gains are possible. One cause is that the application of water
has a degree of non-uniformity and, therefore, if the farmer wishes to give an adequate dose for the
entire field, the farmer needs to over-irrigate most of the field. The higher the uniformity of an
irrigation system, the less over-irrigation is needed.Crop water productivity (i.e. the amount of yield
per volume of water consumed) is important. A shortage of water to about 70% to 80% of the water
requirement (depending onseveralfactors) often results in the highest crop productivity per unit of
water. However convincing farmers to apply deficit irrigation, or less than 100%, remains an
important challenge (Alcon et al., 2014).

The water for plant growth is taken up by the roots. The consequence is that the entire root zone
needs to be considered and not just the top few centimetres. Also, the growth stage is very
important. For example, pears in Belgium need careful irrigation depending on the growth stage
(Janssensetal. 2011).
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Measuring meteorological data by automatic weather stations connected to the internet is now
reliable and low-cost. Measuringrainfall, temperature and humidity by low-costinternet-connected
meteorological stationsis highlyreliable, provided the stationis well installed and located. However,
estimation of evapotranspiration (ET) by the recommended Penman Monteith method also requires
proper wind-speed and radiation data. Low-cost sensors for the last two variables (wind and
sunshine) areless reliable, and need tobe calibrated and/or continuously cross-checked with nearby
high-quality more costly stations or even research stations and advisory services. An Al-based
management model should have proper data-assimilation procedures to integrate low cost
meteorological stationsand combine themwith higher qualityones.

Soil water accounting models with rainfall and estimated crop evapotranspiration have already
been used for some time. Adding Al can combine more sources of information, and check and
updateit by using realtime soil water sensing. One particular challenge is the variability of the field
in spaceand depth.Such sensorsare to be placed in several places in thefield at a minimum of two
to, preferably, three depths. Therefore, alarge numberof low cost sensors could be preferred more
than a low number of expensive but more accurate sensors. The 3D variability within the field can
be captured in this way.

In agriculture, soilwater monitoring (Evettetal., 2012) by in situ sensors can involve tensiometers,
TDR, capacitance measurements orelectrical conductivity. Measuring temperature within the same
sensor is often carried out and allows a temperature correction.

The electrical conductivity-based sensorshave the lowest costand are easy to monitor. Commonly,
an outer coating porous material is used around inside electrodes. The water content inside the
porous material is in equilibrium with the soil water. The electrical conductivity between the
electrodes relates well to the soil water content ifthe salt levelin the soilis not too high.

Tensiometers provide some of the most useful measurements because they measure the water
potential, which is directly related to the ease of water extraction by roots. However, tensiometers
need continuous attention. Now, they can also be monitoreddigitally in real time and malfunctions
can be identified quickly. The digital tensiometer also extendsthe measurementrange to-150 kPa,
which is almost double the range of the manual equivalent.

Time Domain Reflectometry (TDR) and Frequency Domain (FDR) sensors are quite expensive for
economicagriculture. They use more sophisticated measurements of the dielectric constant of the
soil. As the dielectric of water is much larger than the mineral or organic fraction and the air, this is
a very precise method which, for most applications does not require calibration. Ideally, a sensor is
notimpacted by the salinity of the soil water; the higher the frequency, the less theimpact.

The FDR can contain the electronics inside the sensorand the minimum cost is about 150 €. The TDR
works ata higher frequency andis not so affected; it can even be used to simultaneously measure
soilwater content and electrical conductivity. Unfortunately, TDR measurements commonly require
multiplexing of the connection to a specific TDR monitor. This makes it less practical for large fields
andis the most costly method.

It is important to stressthatremote sensing radar or microwavetechniquesonly measure a shallow
top layer of soil, to about 1 cm, and most methods dependon modelling of the deeper layers.

The low costamateur sensorsfor usein gardens arealso installed in the top layer and, in most cases,
they do not measure the entire root zone. They are commonly based on electrical conductivity
measurements, as explained earlier in this text. As already mentioned earlier, the roots take up
water. So, the entire root zone should be measured.

Depending on therooting depth of the crop, this meansthat the deepest sensors need to measure
the water at 60 to 90 cm below the surface.
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Monitoring the above ground crop status by remote sensing has more recently been developed.
Stress can be detected by thermaland multiorhyperspectralimaging. Although these methods are
very useful for remote sensing and research, when water stress is detected, it is often too late for
irrigation scheduling. Remote sensing by drones or by satellites (with regular passing intervals) is
useful, although NDVI methods still suffer from cloudiness, they are most useful to follow the
biomass growth and detect differences in growth within the field. Most irrigation managers agree
that sensing stressin the vegetationas a triggerfor irrigation scheduling is often toolate and not as
reliable. However, remote sensing is still useful. A regular follow-up of the spatial distribution of
biomass within a field is necessary information for precision crop management. It is important to
identify the reasons for differences in biomass production. Although the harvest can often be
related to the biomass, the harvestindex(harvest per biomass) is not necessarily identical within a
field.

Methods following the turgorin cells and/orthesap flowin orchard trees are very useful for research
butless soin the practice of commercial farming.

Irrigation scheduling, along with soil water accounting in the entire root zone, benefits from real
time in situ measurements. Alis needed to assimilate the measuredonline datafor correction of the
root soil water balance and improving the scheduling accuracy. A combination of low-cost sensors
and the spatial 3Droot zone monitoring, togetherwith vegetation monitoring, is needed.

A more efficient and rational water use for crop growth is possible by a combination of modelling,
soil water sensing in the root zone, remote crop biomass monitoring and weather forecasting.
Irrigation scheduling requires a good follow-up of the water in the root zone of the crop. All these
data sources should be integrated into the Alapproach.

4.1.2. Water supply monitoring

Flow data in irrigation pipes or canals can also be monitored in real-time by loT because of solar
panel powered internet connected sensors. This allows us to follow the quantity of water at any
place in the irrigation system by wireless means. Typically, for pressurised irrigation there can be
continuous detection of leaksand a very quick response.The volumes of water can be administered
to the crop more precisely and accidental losses avoided.

Hydraulic structures should be installed on canals. The water levels are monitored by pressure
transducersor by ultra-sonicsensors.). The latter is often preferred as it is without contact with the
water. Currently, they are also low cost and easy to integrate to monitor continuously. In addition,
as costs have been reduced, extra sensors can be installed downstream of the hydraulic structure,
to control possible backwater effects and prevent faulty interpretations. A hydraulic structure
always implies a (small) loss in hydraulichead.

Similar possibilities exist for pipes. Measuring the pressure drop along a Venturiallows monitoring
of thedischargein a pipe. The small pressure drop occurs in the Venturineeds to be compensated
by the pump, to obtain therequired pressure and discharge for theirrigationsystem.

Propeller meters have traditionally been used for monitoring volumes of water. This is common
practice, especially for water accounting of flow through pipes. Nowadays, they are also available
with digital connections to theinternet.

The transit time of an acoustic signal between two or more pointsin the pipe is more expensive.
Such a measurement doesnotimply pressure lossand theneed for a Venturi or an orifice restriction
inside the pipe. Also, magneticflow meters on flow pipes are possible.

In a similar way, either velocity radar sensors or acoustic dopplers can be installed on irrigation
canals without the need for hydraulic structures and without loss of hydraulic head. The velocity
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radar sensor has the advantage of being non-contact, which is a major advantage for flow with a
high sediment load.

While pressure transducers and ultra-sonic level sensors have become low cost (25 to 50€ for the
sensor and approximately 100€ for the internet link), the acoustic dopplers cost at least 5000€ for
onesensor.So, for adense measurementnetworkon pipes and canals at different levels within an
irrigation system, the lower cost systems could be preferred. Precise and spatially detailed
information from the irrigation system can be integrated in the management of the entire system
using Al. Any malfunction and/or leak can be quickly alerted, in order to save water. Along with the
real-time monitoring of flow valves and weirs, theirrigation system can be operatedby loT.

4.1.3. Reduction of water use by smart irrigation and smart micro-irrigation

In many countries in Europe, a flexible reel machine with a moving rain gun (Figure 4.1) is used. This
is, however,a method requiringhigh pressure (energy costs are a linear function of the pressure for
equal application rate) and suffers high wind-drift losses. Rain guns can be equipped with a solar-
panelled GPS, pressure and spray-angle control connected to remote control over the internet. As
an example, therain gun can be stopped automatically or remotely if the wind becomes too strong.

Replacing the rain gun (Figure 4.1) by a spray boom (Figure 4.2) already allows for an important
water saving, especially under windy conditions. In addition, the much lower pressure for a spray
boom implies an important energy saving. The spray boom, which irrigates much more uniformly,
also allows for monitoring of pressures and discharges within the system. A spray boom is, however,
more expensive compared to a rain gun. If water and energy savings are not perceived as being
important, farmers will not be eager to convert to the more efficient spray boom, which can also
allow for differential and more precise irrigation within a field. As mentioned before, the more
uniform theirrigation equipmentis, the more water efficient it becomes.

Figure 4.1 Rain gun attached to a reel machine (not in the photo) (source Guido Wyseure)

Even more saving can berealised by drip-irrigation.This system supplies the rootzone directly and
avoids wind drift losses and soil evaporation. While a reel machine with a spray boom is highly
flexible and can be used for different fields, a drip irrigation systemis a permanent installationand,
therefore, not as flexible. This poses more challenges for land cultivation and crop rotation. An
additionaladvantageis thatadripirrigation system can be remotely controlled and pressures can
be measuredinside the system. As such, a high level of automationis possible, in conjunction with
soiland water monitoring. Drip irrigation requires water quality control and allows for “fertigation”.
This means that a very precise, timely and more efficient demand for fertiliser is possible with less

34



Artificial intelligence in the agri-food sector

nutrient losses to the underlying aquifer. Sensing the pH and the EC of the irrigation water is
important for proper functioning.

An Alsystem forthe spray boom orthedrip-irrigation that measuresthewatersupply and combines
this with the soil water monitoring, increases the efficiency and reduces excess water delivery. This
should improve the management at thefield, farm, and irrigation system level.

Figure 4.2 Spray boom attached to a reel machine (source Guido Wyseure)

4.1.4.lmproving the efficiency of water use

Variability in soil properties and soil profiles within fields implies that there is a spatiotemporal
variability in soil water content and water stress experienced by plants. This may mean that, under
a uniform irrigation regime in a particular field, the crop water use efficiency can be very variable,
leading to non-uniform cropgrowthand yields. Scheduling the timingand volume of irrigation can
be improved ifthereis a better estimate of the forecast irrigation needs in different field locations,
based on a combination of local sensing of the crop and soilindicators, as well as water loss due to
evapotranspiration.

A monitoring system that captures several plant, soil and weather parameters can feed enhanced
models for the dynamics of water use and water needs. These can be physics models enhanced by
Alwith data processing of allthe available data and theirtemporal, as well as spatial, variability. Such
a system ensures that mostlocal disturbances are incorporated for predictive accuracy. A novel
irrigation control strategy, based on a hybrid model of predictive control can, after suitable field
evaluation, resultsin improved water use efficiency and water productivity (Bwambale et al., 2022).
Efforts have been madeto include rooting depth in theirrigation technology, thereby changing the
depthin the soilwhere water is delivered, to have thebest uptake efficiency (Liaoet al., 2021). Much
of the stress and burden of irrigation can be reduced for farmers and users. In some cases, farmers
can also remotely visualise and monitortheir cultivation environment, to see the performance and
state of their plant and soil conditions, aswell as control the status of actuators using mobile phones
and computers (Abioye et al., 2022). Reducing water consumption will have to consider the soil
variability and the response of the plants tomake a more efficientuse of everyapplied drop of water.
Plant-level sensors can giveindividual plants or plant monitoring units the ability to communicate
their needs inrealtime. After all, the best-placed entity to answer the question “how much water is
too much water” is the individual plant, communicating its needs. real time and determining when
it wishes to be watered, how much water it requires, and how much thirst it can take before
compromising the final expected yield (Owino & Soffker, 2022). Artificial intelligence combining
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plantand soiland weather datawith accurate,dynamic growthmodels can look at specific scenarios
in the management of the available water as well as the expectations of yield quantity and yield
timing (Figure 4.3). Efficient precision irrigation technology supplies the water to each field or part
thereofaccording to thegrowingseason andtheseexpectations. In the next step, improvements of
the irrigation management can be expected from the use of digital twins. This also opens
opportunitiesfor precision “fertigation”.

Figure 4.3 The future of precision irrigation control, with cloud-based data storage and
processing, real-time communication between plant-based sensors, intelligent agents
(including robots), supported by weather data and market analytics. (Owino and Soffker,
2022)
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4.2. Management of aquifers and river catchments

Integrating thelocalmanagementat a regional scale isimportantin managing the waterresources
in aquifers and river catchments.

4.2.1. Monitoring water level in soils and rivers

Most countries in Europe have a network of river and aquifer monitoring. We do not elaborate this
detail here but the measurement of water resources is fairly standard in most member states.Several
existing water information systems allow real time access to data by the public including the
farmers, especially to river and canallevels and discharges.

Real-time access to groundwater levels is less common and those levels change more slowly. But
more real time sensors connected to the internet would also be very useful for following the
groundwaterreservesin real-time.

Theintegration of regional water resource levels andthe forecast of water resources availability into
irrigation and drainage management opens up new possibilities for intelligent proactive
managementunder drought conditions.

4.2.2. Information on phreatic water table for run-off management and
groundwater recharge

Some water managers blame the draining of agricultural fields in many parts of Europe for water
shortages. It is important to understand that most agricultural drainage systems are meant for
workability and trafficability during early spring, to allow field operations and grazing, but not for
summer conditions. Also, during harvest in the autumn and early winter, machinery mightdamage
the soil structure of very wet soil. At the same time, it should be well understood that roots foralmost
allcrops (rice is an exception) grow in aerobic conditionsand not in saturated conditions. Crops with
shallow roots will suffer more severely during dry periods. Also, during the summer, the excess of
evapotranspiration over rainfall reduces the groundwater recharge to zero, regardless of whether
thereis a pipe or ditch drainage systemor not.

Figure 4.4 Level controlled drainage with higher water level and lower outflow. The
manhole on the collectordrain is blocked (courtesy of
https://www.boerennatuur.be/peilgestuurde-drainage-en-subirrigatie/).

Shallow phreatic water can contribute to rootzonewater supply by capillary action. Therefore, level
controlled drainage (Figure 4.4) lowers the water table when needed for workability/trafficability
and keeps water levels higher duringthe growingseasonin the summer. Thisis often done manually
by controlling the water levelin the manhole of the collector before discharge into the ditch.
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It is important to stress that level-controlled drainage is only feasible in flat low lying areas with
shallow groundwater. In sandyareas, the control of the water level by ditches is sufficient and there
is no need for the installation of tile drains. In medium textured soil with shallow phreatic water,
drainpipes have added value. The fine textures, like heavy clay, have too low a conductivity for
effective drainage.

Measuring groundwater levels in a drainage system allows us to adjust the groundwater level
automatically in a climate adaptive way. In combination with distance controlled, adjustable weirs
and levels in the manholes, climate adapteddrainage is possible.

Higher demands of ET during the dryand hotperiodscan steerarise in water so thatmorecapillary
rise can reach the bottom of theroot zone.

Alternatively, forecasts of heavy rain can be a signal to lower the table in order to create an extra
bufferin therootzoneto store morerain and to reduce runoff. Immediately after, stormlevels can
rise again. Al can contributeto climate-intelligent groundwater level managementwith advantages
forlocal crop growth and regional water management at the same time.

4.2.3. Al based weather forecasts for drought or water excess

Weather forecasting has been improved by the use of supercomputers and cooperation between
weather services. In general, predictions for the next 5 to 7 days are accurate, especially for
temperature and general weather conditions. However, the amount of rainfall is still more difficult
to predict. Therefore, local weather stationsare stillusefuland should be integrated.

Foragriculturaldrought, itis important to stress that it is the storage of soil water in the root zone
that matters.

4.3. Challengesfor Alin soil and water applications

4.3.1. Macro-management of the water supply

The Al will allow the integration of several sources and a large quantity of data to proactively and
quickly react to multipurpose management of the crop, along with the conservation of water
resources. The online connection throughthe loT of a large and diverse sensor network is important
for soil water balance models that drive irrigation and drainage scheduling. It leads to the climate
adaptive control of phreatic water levels for sustainable and economic crop growth. At the same
time, the water supply and phreaticlevel control can be monitored and integrated within the local
water balance models. Data assimilation algorithms need to update the models with the observed
variables. With a high number of sensors, monitored simultaneously by loT and with a very short
time interval, a continuous automatic data check and correction is essential. In addition, spatial
images of crop biomassfromsatellites or drones can be integrated. Ideally, the models can consider
the status and forecasts of regional water resources, to preserve the quality and quantity of the
resources.

Carefulregionaland local water table managementin lowlying areas, by Al-steered phreatic water
level control, should replace the former simplistic view of agricultural drainage.

4.3.2.When and how to irrigate

Albased management of aquifers andall water supply sources and precisionirrigation systems that
incorporate crop soiland weatherinformationallows farmers to increase water-use efficiency.

Variable irrigation within a single crop or field must be achieved based on models for forecasting
water needs and data analysis from previous seasons. A major challenge here is the integration of
crop-soil-water models with real-time data-acquisition and weather forecasting. Capturing the
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monitored spatial variability of the available waterin the entire rootzone is important for managing
the water supply to the crops. Also, providing irrigationappropriate to the growth stage of the crop
is paramount.

In the foreseeable future, irrigation decisions will be based on ever smaller sections of a field,
perhaps down to a single plant. In these operations, the seed selection and the root development
potential of varietiesis an importantdecision forfarmers. With increasing problems of water scarcty
and environmentalimpact, a policy leading to high water productivity (maximum yield per unit of
water) and minimal environmental impact should be implemented. This means maintaining low-
cost water, up to the maximum productivity, but substantial incremental costs for over-irrigating.
With Al, a lot of water can be saved by more precisely targeting the maximum water productivity,
rather than themaximumyield, which includes attention for the growth stage. Theirrigation timing
and the use of water only when required can increase the water productivity and the crop yield
resulting in 'more crop perdrop'.

4.3.3. Storing surface water for long dry spells

In recent years, there has been the phenomenon of periods with heavy rains, alternating with long
dry and hot spells. This can be within a single year or it may be that wet and dry years alternate on
an irregular basis. Not all the excessive rain can percolate into the soil but should be captured in
reservoirs. Deciding on the size and location of these reservoirs can best be done based on all the
information about water storage capacity of the soils, the types of crops planted and the crop
rotation, as wellas the long-term weatherforecasts. Al can be a usefultoolin preparing such plans.

Weather forecasts,in combination with water levels in storage basins, can alleviate the risk of floods
and may also offer opportunities to divert water to other regions where expected rainfall is lower.
Such dynamicuse of storage capacity can reduce flood risks and also avoid much water going into
rivers (in the short term)while there may be a shortage (in the long term). The regional topography
has to be taken into account in such managementstrategies.

In addition, soil water levels can also be dynamically changed through drainage control. This is
another component of dynamic water storage management, in combination with reservoirs and
basins. Artificial intelligenceis a useful tool for such management.
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5. Alin animal production

Livestock farming is a key part of the food production and supply chain. By 2030, the demand for
animal products is projected to increase by more than 20% globally (OECD-FAQ, 2021). From this
perspective, it seems that there will be continued motivationto intensify animal production in the
coming years. However, changing eating patterns and environmental concerns across the EU are
acting to restrict expansion of the animal sectors. Greater attention is now being directed at
resource efficiency, animal health and welfare rather than at the volume of production. As a
consequence, EU livestock farms are consolidating with the smaller, less efficient producers
struggling to survive. For thosethatremain, staying competitive is stilla challenge and technologies
are needed to enhance the sustainability of their operations (Anonymous, n.d.).

In modern livestockfarming, there aremanydifferent technologies which allow farmersto manage
their production processes more easily and accurately than before the widespread availability of
computers. For example, on a basic level, bookkeeping software allows a farm's overall economic
performance to be tracked, while climate and feeding control systems remove the need for
repetitive manual labour. However, the most important aspect of livestock farming, namely the
monitoring of the animals themselves, is still a significant effort requiringboth time and skill on the
part of the farmer. In recent years, steps have been made towards developing technologies for
monitoring animal health, welfare and productivity with theaim that farmers better understand and
act on their animals' needs within an appropriate time frame. While there have been some
successes, e.g. the dairy sector, there are nevertheless, remaining challenges in trying to realise
robust technology to do this on the farm. These include biological challenges, i.e. time-varying
behaviour of animals, environmental challenges (conditions that interfere with the quality of
collected data), as well as the challenges in handling the volume of data produced by sensor
technologies. Therefore, while sensors, data storage and networking components are already
sufficiently developed, new data analytical methods are now needed to make further progress
(Nortonetal., 2019).

Artificial Intelligence is the science and engineering of making intelligent machines and is infiltrating
many industriesglobally.Itis not surprisingthatthe link between livestock farming technology and
Al is building in importance day-by-day. Advances in the application of Al techniques to process
data provides the opportunity for software to become more intelligent and accurate in the
extraction ofinformation on the health and welfare and productivity of animals, froma wide range
of data sources. Thereis no denying that the future of farming will be more automated, intelligent,
and data-driven thanitis today. The question is how exactly will it look and what influence will Al,
loT, and, perhaps, virtual reality have on the new generation of livestock farming? Will these
technologies be the core of the realisation of more resource and labour efficiency in the future.

5.1. Why are Al technologiesimpacting animal production?

Al and associated technologies have been around for many years now and infiltrated many
industries. However, in recent yearsit has suddenly gainedhype andis nowa commonly used buzz-
word that attracts wide-spreadattentionin the agricultural research community.When considering
the range of applications in the animal production sector, the following reasoning can be derived
for this popularity:

e The performance/price ratio of currently available computing power has never been so high.
This makes it interesting for researchers or companies that want to exploit the power of deep
learning in the modelling of large data-sets. The key to this is the rapid development of
graphical processing units (GPUs) which enable large scale parallel computations to be
implemented on a standard desktop machine. Such broad availability of computational power
is spurring an explosion in the application of Al.
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e Thereisa large volume of data being produced by modern sensortechnologies andthis needs
to be processed into valuable information. In animal farming there are a plethora of data
sources, such as cameras, microphones, and sensors (such as 3D accelerometers, temperature
sensors, skin conductivity sensorsand glucose sensors). Fortunately, Al based algorithms need
large datasets for model trainingbefore they become robust enough to make smart decisions.
The complementarityis contributing to their broadening applications in the field.

e The Alalgorithms of today are more accurate and perform betterthan ever before. Because of
the availability of (pre-trained) deep neural networks, more accurate classifications or
correlations can be made than were previously possible.

¢ Industry and governments start to see the opportunities with Al technology and the level of
investment in research and innovation is increasing concomitantly. Moreover, traditional
livestock input companies (e.q. producers of feed, pharmaceuticals, building technology) are
starting to expand within this knowledge.

5.2. Hardware for Al processing on livestock farms

A major aimin the utilisation of data-driven technology to monitorfarm animalsis to do it the cost
effectively, in as robust a way as possible. This does not mean that because sophisticated and
expensive hardware systems are available, they will be cost effective for farmers. Appropriate
hardware and software components must be carefully chosen to achieve a favourable price/value
ratio. In this respect, thereis always a choice to be made between body-worn and remote sensing
solutions. While the cost of individual hardware units to the farmer should be kept cost-effective,
this is limited by the price/quality ratio. Therefore, the added value of the technology should be
derived via intelligent data processing.Forthis, Altechnologies such asdeep learning, arebecoming
increasing important.Some of the most interesting technologies producing data on livestock farms
include:

Farm equipment: Almost all standard farmequipment, whetherit be for climate control, automated
feed mixing, or milking, collects informationthat can give importantclues on the productivity of the
animals, energy use and general welfare. More high-tech machinery, such as automatic milking
machines, can also collect information onanimal healthand productivityon an individual level. The
opportunity to combine these different data sets is now evident and some companies are now
producing platformsthatenable different datasets to be combined.

RFID:Theidentification and tracking of objects throughouta supply chain usingRFID tags has been
quite a success for many sectors. In animal production, these tags have also been used to identify
individual animals so that the provenance of the animal can be verified along the supply chain.
These tags can also be used to derive information on the animal health and welfare. However,
commercial applications of this are scarce.

Wearable sensing technology: welfare sensors, such as accelerometers, can be fixed to the animals,
usually in the form of neck and leg-worn devices. There is quite a body of research demonstrating
the success of such devices in the dairy sector, where cow activity increasingaround the beginning
of oestrus can be successfully detected using these devices. Given the clear added value to dairy
farmers, these systems are now adopted in the industry. The value has not been so clear for other
sectors.

Computer Vision technology: Computer visionis a technology thatis provingto be extremely relevant
to animal production, health and welfare monitoring. With advancesin machine learning forimage
processing there has been an explosion in the range of application fields but this technology is still
attheresearch stage, with limited successwhen being applied (Chen et al.,, 2021).

Sound monitoring technology: For animal monitoringresearch, sound analysis technology has been
directed to measuring animal soundsthat are indicative of compromised health and welfare status
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of theanimals. In past decades, a lot of attention hasbeen given tomeasuring andanalysing animal
vocalisations and other environmental sounds in livestock houses but, so far most of the
applications are mainly based on experiments at a laboratory scale or research farms and the ones
that userealfield measurements aresstill scarce.

5.3. Al forimproving animal productivity

Tools to monitor animal productivity have long been utilised in the different livestock sectors.
Automatic weighing devices are regularly used in the dairy, pig and poultry sectors. Milk and egg
production monitoring is also a highly automated process on modern farms. However, apart from
the dairy sector, which is leading the way with automated milking systems, the exploitation of
modern technologiesto optimise the growth and productivity of animals through automated feed
management are only just beginning to emerge. Feeding management represents an interesting
development as standard feeding strategies typically offer animals the same feed amount and
composition (e.g. some animals can receive toomuch and otherstoo little nutrients). Consequently,
thefield of 'Precision Feeding' hasemerged during the last 15 years, givingrise to technology driven
methods that optimise the growth and body composition of individual animals by automatically
controlling the quantity of feed energy and amino acids being offered. The technology is
sophisticated; underlying physiological processes should be quantified and married with
appropriate sensing and actuation in order to provide continuously targeted individual feeding.
ResearchersfromCanada have alsodemonstratedthatsuchan approach can realise a 27% decrease
in Lysine intake and 27% reduction in Phosphorus excretion, when compared to three-phase
feeding (Pomar et al.,, 2011). While zootechnical benefits of this technology have been validated, the
market pullhas not yet been strong enough to stimulate furtherinnovation, despite the possibility
to reduce feed costs by 10% (Pomar et al., 2011).

5.4. Al forimproving animal welfare

Enabling real-time managementofanimal welfare is a core ambition of precision livestock farming.
This aligns with the current focus of the European Commission's Green Deal to enhance the welfare
of production animals ((A European Green Deal | European Commission, n.d.)). Data-driven
technologies have strong benefits above current approaches of welfare monitoring, which are
either focused on identifying 'lceberg indicators' at the end of a production round or else are
infrequently observed (typically once ortwice) by auditorsduring the production round itself. Data-
driven animal husbandry can, on the other hand, enable a more welfare-optimised way of animal
management. Instead of the farmer managing animals based on economic indicators alone they
have the opportunity to adjust the conditions based on welfare indicators, which also have a
production value. Realising this objective requires different Al technologies. For example,
processing of the multiple sensor data to automate the estimation of welfare indicators requires
novel machine learning methods, the optimisation of conditions around the animal to improve their
welfare requires optimisation techniques, and the selection of appropriate actions based on the
reasoning engines. These must come together to offer another level of Al driven decision support
beyond current practices.

5.5. Al forimproving animal health

Al based technologiesare becoming more frequently used to detect and diagnose diseases in farm
animals. Examples include the detection of respiratory issues as well as abnormal physiological or
behavioural signals. Some examples already exist on the market, whereas many more are actively
being pursued by the research community with the aim of reducing antibiotic usage on farms.
Respiratory healthmonitoring is a goodexample of where Altechnologieshave made an impacton
animal health monitoring. Fromthe past, it is known that, throughaudio processing, the automatic
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detection of pig coughs, a good indicator for respiratory problems in pigs, could be accurately
detected. A study by Berckmans et al. (2015) showed that an automatic detection tool could give
warnings up to 2 weeks earlier, comparedto a situation wherethe pigs wereobserved by the farmer
andtheveterinarian. While this is just one example, there are many interesting opportunities for Al
in animal health monitoring. Being able to identify high-risk animals on an individuallevel in large
herds is still a significant challenge and opportunity. The follow-up opportunities then include the
continuous follow-up of diseased animals following treatment and quantifying the risk of disease
spread notonly onthefarmitself but on aregional level.

5.6. Al forimproving animal breeding

Animalbreeding is the process of selecting and breeding with those animals in a herd which express
favourable genetic traits. These traits can be expressed physically (e.g. body geometry and size),
physiologically (e.g. stress response) or they may be behavioural (e.g. temperament). Phenotyping
comprises the tools and methods to measure parameters associated with these traits and can range
from laboratory-based assays to non-invasive sensor systems. While the range of these animal
phenotyping technologies is broad, the requirement to record objectively and in a non-biased
manner, in order to infer information on the targeted traits, is universal. Of course, the speed of
throughput of the phenotyping is of vital importance in order to capture a representative volume
of information that can be used in the breeding programme. This has led to the development of
what are called high-throughput phenotyping technologies (HTPs), which use data-driven
technologies to measure many physical and biochemical traits of animals, quickly and accurately
(Silvaet al., 2021a)

The measurement of many phenotypic traits in a high-throughput manner allows for a more
efficient selection of animals with desired characteristics. As noted by Silva et al. (2021), the recent
advances in sensors and data analytics have enabled and promoted the application of high-
throughputphenotyping in animal breedingand genetics research. Pérez-Enciso and Steibel (2021)
explained that this has two main reasons: (1) novel traits can now be measured using new animal
monitoring technologies, and (2) classical traits can be measured continuously and objectively over
longer periods than were previously possible. Nevertheless, they also see that these steps forward
have given rise to new challenges that need further consideration, e.g. large volumes of
unstructured, noisy, partially redundant, and partially incomplete data.

5.7. Challengesfor Al solutions on livestock farms

While the integration of digital technology is now happening across EU livestock farms, the full
exploitation of the potential illustrated in Figure 5.1 has yet to be achieved. Some key challenges,
which are expanded below, stillneed to be addressed.

5.7.1. The diversity of farming systems.

There is enormous diversity in the way animals are farmed, which does provide significant
opportunities for product marketing and differentiation. However, the development of Al tools
requires a degree of uniformity to reach successful deployment. Therefore, it is not surprising that
data driven tools work best on larger farms where standardised layouts have been adopted. The
future challengeis to develop technologiesthat are robustand scale independentwithout the need
for new research and development.

5.7.2. Computing power.

Given the volume of data that needs to be processed and the sophistication of the Al algorithms,
thereis a need for expensive computing poweron thefarm torunthesealgorithms. Farmers should
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not be expected to purchase and maintain suchcomputingresources,in ordertoadopt Alona farm.
Furthermore, the transfer of large volumes of data for processing on the cloud should not be relied
on, given the threats from hackers and internet connectivity. Therefore, further research on
developing techniques thatcan work on the edge of IT networks is required.

5.7.3. Maintaining farmer trust.

As Al technology becomes more widely adopted by farmers, the reliance on the technology
increases concomitantly. Achieving reliable Al algorithms require training with large volumes of
data. Moreover, it also requires thorough scrutiny of the type of decision support offered to the
farmer by the technology. This brings risk to the early adopters of these technologies, which have
to have a sufficient maturation period and can act to reduce the trust in the technology when they
fail. Therefore, appropriate design standards, governed by the appropriate bodies, should be met
before this technology is releasedto farmers.

5.7.4. Business models.

While the development of Al applications is regularly donein isolation from other technology, the
integration of different data sets can realise opportunities beyond what was foreseen with the initial
application. Business models that stimulate interaction between different companies should be
explored to maximise synergies betweenapplicationsand, in turn, avoid farmers being overloaded
with multiple applications.

Figure 5.1. Schematic on the linking of animal monitoring with management actionsina
data driven framework (Source: Tomas Norton)
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6. Al in supply chain management of horticultural products

Horticultural products such as fruit, vegetables, nuts and flowers are perishable by nature and
remain highly prone to pests and pathogens. Once harvested, their quality during the supply chain
depends on ambient conditions, notably temperature, relative humidity and atmosphere
composition (O, and CO; levels, ethylene). While, in general, quality decreases during the
postharvest life of many horticultural products, so-called 'climacteric fruit'are harvested unripe and
their quality actually improves during postharvest ripening in controlled conditions. Inefficiendies
in the supply chain can lead to significant quality decay, food safety issues and food and nutrition
loss. Estimated losses of fruit and vegetables can be as much as 40% (FAO, 2019). Postharvest
technology aims at providing solutions to support quality management, from harvest to the
consumer, and includes technologies such aslow temperature and controlled atmosphere storage,
packaging, and treatments with fungicides, plant growth regulators (such as ethylene or 1-MCP),
coatings and waxes. Therefore, product quality management by appropriate postharvest
technologies plays a key role in all segments of the horticultural supply chain (Rong et al., 2011;
Trienekens & Zuurbier, 2008). Al sensing technologies and data-driven innovations can play an
important role in monitoring the quality and safety of horticultural products throughout the chain,
timely decision support, market linkagesand supply chain resilience (Lezoche et al., 2020; (Popa et
al.,, 2019). The remainder of this section focuses on fruit and vegetables but Al offers similar
opportunitiesin the postharvest handling of nuts andflowers.

6.1. Al'in online sortingand grading of fruitand vegetables

One of the common operationsin the supply chain is quality based grading and sorting where the
quality attributes are visually perceivable such as size, weight, colour and presence of external
defects. Images are captured using colour cameras and the choice of Al approaches range from
traditional machine learning methods (Zhang et al., 2014), to more recentdeep learningalgorithms
;) (Yang & Xu, 2021; Zhou et al., 2019). Their advantage, compared to more traditional image
processing techniques, is that the former do notrequire relevantfeatures to be defined upfront and
taketherawimages as input, thereby greatly reducing development time. A multitude of Al based
solutions have been developed to monitor the quality of external attributes for a variety of fruitand
vegetables (Elakkiya et al., 2018; Nturambirwe & Opara, 2020; Zhou et al., 2019) and are being
implemented by major sorting line manufacturers.

Over thelast two decades, novel measurementtechnologies have appeared, that allow the online
sorting and grading of fruit and vegetables based on internal quality attributes, such as sugar and
dry matter content, firmness, andthe presence of internal disorders, pestsand diseases (e.g.internal
browning or worm holes). It is often impossible to observe these attributes from the outside. A
multitude of non-invasive sensing technologies, such as NIR spectrometers, spectral imagers,
Raman spectroscopy, fluorescence imaging, backscattering imaging, acoustic sensing devices, e-
noses and e-tongues, X-Ray devices, MRI, and OCT, among many others (see the comprehensive
surveys by (Nicolai et al., 2014; Walsh et al., 2021) have been considered. Near infrared (NIR)
spectroscopyis amongstthe most populartechnologies, asit allows online measurements of quality
attributes such as the soluble solids contentat typical commercial speeds of 10-15 fruit per second
per lane. It relies on the measurement of absorption and scattering of NIR radiation (780-2500 nm)
by the fruit, through reflectance or transmittance measurements. Multivariate regression models
are then established between the variable of interest, such as the sugar content and the NIR
reflectance or transmittance spectrum. These so-called calibration models are typically constructed
using well-established chemometric techniques, such as partial least squares regression analysis
(PLSR) (Saeys et al., 2019). Recently, deep learning networks are becoming more popular.
Researchers have found relatively smalladvantages in deep learning networks for calibration, with
respect to traditional chemometrics or other nonlinear models, such as support vector machines
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(SVM). The advantage that deep learning networks have is that they can easily be adapted to take
into account additional information, such as the origin of the product, season, and all other data
that sensor networks in orchards or greenhouses may collect during production, e.g. weather
conditions, leaf area index, irrigation, etc. This could potentially increase the robustness and general
applicability of the calibration models and increase sorting and grading accuracy. A further
developmentis hyperspectralimaging, which combines machine vision with spectral analysis. It has
been used to evaluate the spatial distribution of quality attributes on or below the surface of the
fruit. The output is a hyperspectral image: a data cube that has two spatial and one spectral
dimension. The size of this data cube is challenging, both in terms of bandwidth on the sorting line
and computational resources. Hyperspectral images are often analysed on a pixel by pixel basis,
thereby losing information on spatial patterns. Much more valuable information may be obtained
by means of deep learning networks. The state of the art of VIS/NIR/IR spectroscopy for measuring
fruitand vegetable attributes hasbeen reviewed extensivelyin Walsh et al. (2021).

Although NIR transmission spectroscopy is being used for the detection of internal quality defects
that do not generate externally visible symptoms, its accuracy is limited by the relatively small
penetration depth of NIR radiation. The potential of X-ray radiography and tomography is now
being investigated as the penetration depth of X-radiation is much better than that that of NIR
radiation. X-ray radiography is easy toimplementbut suffersfromlimited contrastand optical path-
length effects, which are due to the fruit's size and shape. X-ray tomography reconstructs a 3D image
of the product from a large number of transmissionimages at various angles. It provides high
resolution 3D-images but is more difficult to implement online because of both hardware and
software constraints. In both cases, deep learning can be used for segmentation and classification
as it avoids the manualselection ofimage features (van de Looverbosch et al., 2021). One problem
is the difficult and time consuming annotation of datasets, combined with the need for large
amounts of training data. The potential of combining 3D CT images with X-ray projection
simulations and data augmentation techniques to compute large virtual datasets of X-ray
radiography images, which are suitable for training radiography systems for internal quality
detection, is currently being investigated. Also, novel deep learning-based 3D reconstruction
techniques are being developed toreduce reconstruction time, so it is compatible with commerdal
sorting line speeds (Janssens et al., 2018).

6.2. Al for linking postharvest quality to pre-harvest conditions

The incidence of storage diseases and disorders, such as superficial scald of pome fruit, typically
increases during postharvest storage. Meanwhile, quality attributes change as well. In developed
countries, the majority of fruit and vegetables are sorted and graded online just before
commercialisation. These systems provide a continuous data-stream of quality attribute
measurements thatare currently under-utilised. Al techniques can be used to detect patterns in
these changes, throughout the storage season, and use this information as early warning systems
for cool store managers. For example, the susceptibility of pome fruit to superficial scald —a storage
disorder that causes brown discolouration of their skin- varies between seasons and is difficult to
predict at harvest. When superficial scald is detected early in the season, this may mean that pome
fruit that are not stored under very low O, atmospheres or are not treated with plant growth
regulators, suchas 1-MCP, are susceptible to the disorder. By monitoring how superficial scald
evolves during the storage season, based on the output of sorting lines, an Al based system of
decision support may advise to commercialise susceptible fruitas soon as possible.

In the next step, the output of sorting and grading machines could be related to orchard data,
weather conditions or greenhouse indoor climate, soil condition, fertiliser application, pesticide
application, satellite and drone data, and other data collected by field robots and sensor networks.
In this way, the industry then becomes the laboratory. In contrastto designed experiments, where
well-defined levels of factors are imposed to optimise the information content of the experiment,
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this is compensatedby the availability of massivedatasets. Deep learning networks are particularly
suited to such analyses. Theycan be incorporated into Al systemsthatcan be used toadvise farmers
and cool store operators for adapting production systems and cold storage protocols, to improve
quality. A major issue is that all those data are distributed among the different stakeholders. This
implies that data formats needto be standardised. Also, confidentiality issues should be considered.
Large companies and co-operatives are now developing in-house data management and Al
systems. Appropriate application programming interfaces (APIs) should be developed to enable
communication with the software used by other parties.

6.3. Digital twins of horticultural supply chains

Digital twins for horticulture were discussedin Section 2. Here, the discussion is focused on quality
as the product moves through the chain from harvest to consumer. A digital twin is then a digital
representation or mathematical model of thefruit or vegetable and its environment. It is linked to
thereal-world products by sensors supplying dataof the environmental conditionsnear the target
fruit or vegetable (Defraeye et al., 2021; Verboven et al.,, 2020). The digital twin is typically a
mechanistic model based on physical conservation laws and kinetic equations. For example, cool
stores or shipping containers can be modelled by means of computational fluid dynamics; the fruit
is modelled as a biochemical reactor with inputs, outputs and source terms such as heat and CO,
production by respiration. Alternatively, deep learning networks can be used, as well as hybrid
approaches.

Digital twins of fruit or vegetables can be used forthe management of cool store complexes for long
term storage, such as those for pome fruit. These complexes often include hundreds of cool stores,
each with a capacity of several hundred tonnes of fruit. The energy costs for storage accumulate
while quality decreases with increasing storage time and, at the same time, the market price
typically increases towards the end of the season because of imbalances between supply and
demand. Given the current increase in energy costs, decisions onwhen to commercialise the fruit in
the storage season have a large impact on profits. The commercialisation date is based on prior
experience butis often suboptimal. Digital twins for postharvest storage operationsthat allow the
prediction of postharvestquality changes, based on data from anextendedarray of sensors (O,, CO,,
ethylene, fermentation volatiles, etc.), may feed Al systems that advise when farmers or cool store
managers should commercialise fruit.

Figure 6.1 illustrates the digital twin concept for the shipment of fresh horticultural products in
containers. The digital twin can be used tosimulate the behaviourof the fruitwhen subjected to the
conditions that exist in the shipping container and that are available from the cloud. These
computations are done in real time and, at each moment, give a realistic description of how the
quality of the fruit in the container is evolving. The simulations may be used to diagnose quality
problems during shipping. The shipping manager can also perform a 'what-if' scenario analysis to
optimise a container's climatic conditions within technically feasible limits or to change the shipping
route. In the end, anadditional Allayer may interpret the simulation results and advise onthe proper
actions to be taken by the shipping manager.

6.4. Challenges in supply chain management of horticultural
products

A lot of insight and technology has been proposed and tested under controlled laboratory
conditions for advanced supply chain management. In order to translate laboratory-scale solutions
to commercial applications, robust and low-cost sensors are required, which should be compatible
with new loT-based solutions to monitor and control crop qualityfrom production to retail.
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Atthe moment, it appears that datafrom crop monitoring during production and crop monitoring
in the postharvest value chain are not really coupled. Therefore, Al offersan opportunity tolink crop
growing conditions to postharvest behaviour.

In a further step, it can give information to growerson how to adapt variety selection and growing
conditions to deliver a product thatsatisfies market expectations, in terms of harvest moment, shelf
life quality and reduction of losses and waste.

Figure 6.1. Framework of a digital twin in a transport chain of fresh horticultural produce
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7. Al and the agriculturalmachineryindustry: collectingdata
and decision deployment

Theindustry (CEMA and others) formulates some views and has experiencein tryingto answer the
following questions:

e How robust mustan Alcontrollerbe?
¢ Whatarethedifferent possible scenariosin which Alcan be deployed in farm decision making,
fleet management, functional optimisation, ormachine-driven decision making?
e Whatquality level of datais required for AI?
e  Who/whatis liable when decisions are taken by an Al system?
Legaland safety framework
o forautonomousagriculturalrobotsand machinery
o fordata collection decision deployment

Within the Europeaninstitutes, the call for 'human-centred Al'is still strong butimplies thathumans
need to be protected from Al, and this leads to the proposal that Al regulation is treated more like a
consumer and citizens protection toolthan as a true Al regulation. In several cases, Alis perceived
as an additionaluncontrollable dependency forthe agricultural sector.However, man, machine and
progress arelinked: people build and use machines toimprove orsimplify life. In this sense, Al is just
another step in making machines better and reaching production, savings and quality objectives
that would otherwise requirea longer period or not be reachable at all.

The approach of the Al Regulations, in terms of the requirements for high-risk Al, is correct overall
but the application needs to be differentiated. The concept of risk as the basis of the draft Al
Regulations treats all applications in the same way. The general Al that treats personal data and
grants access tocritical servicesis treated in the same way as the narrow-scoped Al that operates on
thefield to protecta crop.

The scope of the regulation is so enormous that collateral damage seemsinevitable; the machinery
sector might be one of the most affected. Still, there are ways to build in more gradients for the
specificities of sectors like agriculture. Agriculture presents different phases and aspects in
production thatmay require more automationand Alapplicationswithouta substantialincreasein
therisk, comparedto actual human-steered operations. Indeed, in field operations, mosthealth and
safety risks concernthe operatorofthe machine.

Non-exhaustive examples of Alusein agriculture:

¢ Autonomously driving vehicles/machines

e Agriculturalrobots/operationsfor field work

¢ Automatedfleet coordination/management

e Farmingsimulationprotocols

¢ Soil management, e.g. soil analysis and optimised prescription treatment, soil charting for
specific applications

¢ Crop management from seed to harvest (disease and mould detection, pest detection and
solutions, micro nutrient/targeted nutrients)

¢ Weedand pest management

e Weatherand environmental input optimisation

¢ Human work coordination

¢ Animalbreeding, feeding and health management

¢ Predictive analysis of multiple factors

* Decision support —a big difference compared to a pure advice function
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¢ Coordination ofallthe previous functionsin one productionchain
¢ Overallknowledge and decision supportin economic, financialand organisational aspectsof the
business

The use of Al offers undeniable economical, production and sustainability advantages when it
comes to operational efficiency (e.g. the reduction of pesticide and weed control, targeted
application of fertilisers etc.), costin design, and time to market. This tool provides a key tosolvethe
'Gordian knot' arising from growing production, increased sustainability, environmental
requirements and a growing complexity of systems, paired with a more costly and/or reduced
availability of means.

Thus, the requirement for Aladvancement in agricultural operations may require different andmore
sector-targeted evaluation of the risk, compared to the benefits that Al's restrictive requirements
may bring to society.

When a machinery manufacturer uses Al within its own internal design process and its own
controlled data sets, theyare in control of therisks, including those unique to Al, and they have full
liability.

While Al algorithms are quite well known and available, the main game changer comes with the
availability of a large amount of data to be evaluated and related to each other. The amount of
inputs and the building of new statistical relations cause a feeling of loss of control as not every step
can be controlled by humans at the same pace. However, heterogenic quality in data sources may
requirethe systems to treat and assessdata quality and value, to yield a trustworthyresult.

Security is also an upcoming key element for creating trust in such schemes.

An example of an interesting project within GAIA-X is Agri-GAIA, that exclusively focusseson Al
applications (https://www.data-infrastructure.eu/GAIAX/Redaktion/EN/Artikel/UseCases/agri-
gaia.html).

Besides the basic data provided to the machine atthe start (by the producer), the machine continues
to evolve throughoutits lifetime. The self-learning systems are stillimproving after being placed on
the market (maps), by using locally available data and statistical data extrapolated from other
machines (e.g. Adaptive traffic systems). The results from individual Al machines are a product of
usage and given localised factors, such as terrain, soil quality, geographical position, water
availability, weather, etc. Thus, the results can be quite different from the aggregated statistical data
from different machines and, under the control of a manufacturer, they are used for software
updates for allmachines.

It must still be noted that, in many cases, the Al driven function will still need to behave between
certain boundaries but the related risks for the entire machine and its environment, might not be
fully understood/covered in advance.

7.1. Challengesforagricultural machinery developmentin Europe

With growing intelligence and complexity in control systems, more and more intelligent systems
are beingintegrated intomachinery, with theoperator/driver beingreplaced by such systems. With
a growing number of 'extended' vehicle features/functions/services, that require connectivity and
cooperation, there is a growing need for controlled data sharing and cybersecurity measures. For
industry, that would mean access via a platform and not direct access to machines, to protect IP/
trade secrets and product compliance.

CEMA and AEF (the agricultural industry electronic foundation, a global organisation funded by
industry and combining some of the brightest electronicand software experts in the industry) are
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working on the necessary strategy for interoperability networks and technical requirements and
standards.

The main message from industry can be summed up as: Differentiate the legislation in relation to Al
on technology based on the risk arising from the application.
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8. Barriers, challenges, and outlook for Al adoption in agri-
food

Agricultureisin the early days of yet another revolution, at theheartof which lie sensors, hardware,
and connectivity, in conjunction with data models and connectivity. Artificial intelligence in agri-
foodis evolving as an importanttool, together with many technologies, hardware, and software, all
of which are interconnected and can lead to added value activities and services. They gather data
from multiple resources and sensors, apply learning methodologies and prepare decision making
or, even, execute the decisions. Artificial intelligence, analytics, connected sensors, and other
emerging technologies could further increase yields, improve the efficiency of water and other
inputs, and build sustainability and resilience across crop cultivation and animal husbandry. Lutz
Goedde et al., 2020). Thereis a need for further development of the hardware for sensing and
executing decisions but alot of work and attention mustalso be given to data,analytics, and models.
The digital twins are a combination of virtual reality and the real physical processes for improving
efficiency and sustainability in the agri-food chain.

A list of problems that need further attention is given below; they need to be overcome if artificial
intelligenceis to be used as atoolin agri-food.

8.1. Technical developments to reduce barriers for Al in agri-food

Advances in machinery have expanded the scale, speed, and productivity of farm equipment,
leading to more efficient cultivation of more land. Seeds, irrigation, and fertilisers have also vastly
improved, helping farmers increase yields. This section gives the most urgent Al-related hardware
needed for advancing the efficiency and sustainability of field operations, production in modern
greenhouses and in buildings for indoor farming or storage, as well as for consumer oriented
postharvest operations:

e Robustandlow costsensortechnologiesand monitoring solutions, to generate precision data
and actuators fortheimplementation of daily decision-making
¢ New high-tech sensortechnology, low costs fordense use in crop production and the detection
of crop vigourand crop health
- in greenhouses
- inverticalfarms
- directlyinfields
- onmobile machinery and robots
- ondrones
¢ Robustandreliable environmental sensors for monitoring
- health and well-being of animals
- in-houseclimate in greenhousesor vertical farms
- Near-field or in-field environmental conditions that have direct effects on plant growth or
health
e Soil sensors for in-field data or off-line soil compositionand soil health monitoring
* Animal monitoring technologies, suchas animal health or diseases
e Thelnternet of Things (loT)
* Networkand connectivity
- Agricultural operations, farms and data collection and actuation (including manual
registration) can be distributedover alarge geographicarea
- Localavailability of data at each location is not sufficient to use advanced digital tools
- Forfulladvantage of digital tools, good connectivity orequipment would help to turnthese
datainto valuable information as a basis for actions
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e Autonomousorautomaticcontrollers, including automated tractors androbots with actuators,
to carry out the decisions made towards optimal managementand with registration of activities

e Weatherservices

o Satellite services

e Developnew loT based solutions,which are required to monitorand control crop quality from
production to retail

8.2. Challengesfor models, data, and analytics

Since data can be generated from sensors, activities or historical events, there is a need to look at
therequirementsthat these datashould satisfy, to make reliable use of them.

8.2.1. Quality and availability of data for reliable Al development

¢ Availability of large data sets with high variability and high quality; these data should be
findable, accessible interoperable and reusable (FAIR)

¢ High density data pointsfor high-density information on small areas and small time steps,down
to individual plants. This contributes to a higher resolution of information within a complex
system with highly variable and fastchanging dynamic biological processes

¢ Availability of metadata

¢ Reliablelabelling of data for deep learning applications

¢ Application programming interfacesto facilitate communication between existing and novel Al
systems

¢ Noveldataaugmentation methods for training deep learningnetworks

¢ Novel Al methodologiestointerpret 3D or 4D data

¢ Novelandfast 3D reconstruction techniguesfor tomographicimagesofagricultural products

¢ Sufficient data bandwidth in real-time data dense applications such as online sorting and
grading of horticultural products

e Meaningfulinterpretation of sensordata, fromraw data to growerusage

e Softwareand dataanalyticsservicesand learning methodologies

e Quality assurance ofthe data fromsensorsor manual registration

¢ Interpretationofthe data coming frommultiple sources

e Makeuseofphysical orinterpretable models

¢ Data-driven black-boxmodels, to look for potential connections between processes

e Optimisation and decisionsupport

e Easyaccessto high performance computers for training of deep learning networks

e Transformationofdatainto decision support systems for growers

e Usageofdataforautonomous control

e Protocols for maintaining confidentiality of data and consideration of data ownership issues

8.2.2. Development of digital twins in combination with Al

o Consider different aspects of the crop production systemto reach optimum yield by optimum
crop management, while minimisingresource use, includingthe reduction of energy and water
useand pest and pathogen management

e Obtain more real data, especially on different aspects of crop performance, but also pest
pathogens, which are scarcely available or not publicly shared

¢ Morelabelled datasets should be createdand publicly shared, especially in the field of pest and
pathogen management

¢ Usageof more artificial data obtained by mechanistic models

e Extend knowledge and implementation of more detailed and complete mechanistic crop
production models, including more knowledge on crop and product quality, pests and
pathogens
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e Better physics (physiology) based models of the production and postharvest environment,
including greenhouses, fields, storagefacilities and shipping containers

* Bridge the gap between mechanistic models and reality, thus digitalisation of green-finger
knowledge to facilitate Al

¢ Develop interpretable deep learning modes that allow insight into the physiology or physics
hiddenin the models. Create more complete digital twins with highly detailed information on
crop management, resource management and pest and pathogen management

¢ Use and demonstrate digital twins in combination with Al for decision support for growerson
the design and operation of systems

¢ Develop and apply more techniques ofaugmented and virtual reality to make the twins more
coherentand attractive

8.3. Some concerns, expectations,and recommendations

8.3.1. User acceptance of Al

* Include useracceptance and confidence with socialresearch, including supplyindustry liability
and operational safety aspects

* More development of robotisation of human-performed tasks to accelerate the realisation of
fully autonomoussystems

¢ Createmorefield-laboratories with a research-grade high-tech datainfrastructure butclose-to-
practice crop growing systemto facilitate such technologyand Al validation and integration

e Training of growers and their staffin the use of Aland, also, the limitations that can arise. Make
growers and their staff confidentto interactwith automated Albased process control.

8.3.2. Develop trust and equal opportunities

The further adoption of Altechnologiesin agriculture requires that farmers and consumers trust the
services that are offered. Transparency of the supply chain and of the way information is collected
and usedis very important. Some pointsof caution are given below.

Data collection of information about validity, integrity, precision, reliability, timeliness, and the range of
data.

Encourage organisationsto ensure thatdata collection is accompanied by such meta-datathat can
help towards more reliable data analysis and resulting models. This meta-information can also be
added to the product documentation when commercialising Albased models or decisionmaking.

Encourage transferability of data collected by machines and in research organisations.

Of course, thesedatacollection tools must be sure of the quality of thedata, as well as the readability
of the data. This has implications on the ownership of data and on the right of competitors to useit
or for newresearch and developmentinitiatives.

Have mechanisms or initiatives to monitor or compare the results coming from different suppliers
in terms of:

- Modeldrift over time

- Regionalusability or performance

- Performance with respect to agricultural or food policy: does the policy affect the model or
is it the other way around?

Equal opportunities for using the results of digitalisation in agri-food.
Monitor the use of models by small and large farmers and counteract the risk of a widening of the
digital divide.
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Pay attention to the impact Al might have on female farmers(Gwagwa et al., 2021):

How will Alcontribute to gender parity in agriculture participation? For example, willitimprove the
terms on which women participate in agriculture given the current shifts within markets and
agricultural value chains;if so, how? In what ways are the current disfavouring of women by data
and algorithm biases reflected in agriculture? Are the algorithms trained on biased data? What
policies are needed for the intentionalinclusion of women, to redressdiscriminatoryanomalies and
provide safety nets, while utilising Al technologies to include them in new forms of work,
entrepreneurship, and innovation?

8.3.3. Expectations from and for applied research and development (R&D)

Researchers and companies want to bring their results, or their new technology, to the market.
However, it is the experience of many that the road from the laboratory to the introduction to the
market can be long, difficult and, above all, expensive.

Under the Digital Europe Programme (DIGITAL) there are calls for setting up Testing and
Experimentation Facilities (TEFs). In the DIGITAL 2021-2022 programme year, there was a call for a
Testing and Experimentation Facility for Agri-Food (TOPIC NAME: Testing and Experimentation
Facility for Agri-Food General Information Programme:Digital Europe Programme (DIGITAL),2022)
At the time of writing, a project has been selected and contract negotiations are ongoing for a
launch in the spring of 2023.

It is expected that more calls for TEFs in different applications or technological areas will be
forthcoming. The contributorsto this study make some suggestionsfor testing in such facilities.

e Facilitate the use of high-tech sensors of other industries for horticulture, agriculture, and
animalhusbandry (cross-overs)

¢ Combineengineering, IT and crop-experts' knowledgeinto an integrated approach, add sodal
components as well (multi-disciplinary approach)

¢ Combinedifferent technological solutionsinto integrated approach (integration)

¢ Translate smalllaboratory scale or research environment resultsinto scalable demonstrators, as
a step towards commercial application (implementation)

¢ Validatetechnologies in applied demonstratortrialsthatcan be translated towards commerdial
situations thatare meaningful for end-users (validation)

¢ Create morefield-laboratories with a research-grade high-tech datainfrastructure butclose-to-
practice crop growing system, to facilitate such technology and Al validation and integration
(safety)

e Train growers andtheir staffin the use of Aland alsoin the limitations that can arise. Make them
confident to interact with automated Al based process controls (education)

e Treat greenhouse horticulture as a separate 'agricultural system' because of its highly
industrialised characteristics

Furthermore, scientific insight and advanced analytics can be a powerful tool in building the Al
models using large sets of high-quality data and can make use of such virtual facilities to look at
effective procedures for:

* Management of food wastes

¢ Managementofanimal diseaseoutbreaks

e Pest and disease management in crop production: Al based models and calibration with past
data can then look for the effects of limiting or withdrawing some crop protection. It is
important that these (virtual) studies yield long term effects for the food supply, the
agrobiodiversity and the environmentaland human health effects
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8.3.4. Concerns about regulation and standardisation

The approach of the AlRegulations, in termsof requirements for high-risk Al, is generally correct but
the application needs to be differentiated. The risk concept at the basis of the Al draft Regulation
treats all applications in the same way. The general Al that treats personal data to grant access to
critical services is treated in the same way as the narrow-scoped Al that operates in the field to
protect crops.

The scope of the regulations is soenormousthatcollateral damage seemsinevitable; the machinery
sector might be one of the most affected. Still, there are ways to build in more gradient for the
specificities of sectors like agriculture. Agriculture presents different phases and aspects in
production that may require more automation and Alapplication without a substantial increase of
theriskin comparison to the actual manually steered operations. Indeed, in field operations, most
health and safety risks concern the operator of the machine.

8.3.5. Concerns about risks and liabilities

In thereview of the agricultural sectors, it has becomeclear that Al will be able to better organise or
optimise current processes, reduce waste of inputs and outputs and animal welfare. It also offers
new opportunities like autonomous mechanical weeding (instead of chemical use) or new
harvesting and storage technologies. There is a risk of the spreading of crop disease that is not
detected by the agricultural Al but that may reduce food availability (an example of this is
mycotoxins). There is a risk of zoonoses (diseases transmitted from animals to humans). The
question then arises as to what the risks are and what the role can be for Al applications in
agriculture.

Some examples:

¢ Black box machine learning models are currently being used for high stakes decision-making,
However they can only tell what happened in the field or to the animals and may cause
considerable harm. Explaining black boxmodels still leaves them as hindsight models. Models
based on insight (and process knowledge) have some inherently interpretable value and are
considered as being better in a foresight (decision making or planning) context. The value (and
risks) of the Al for agriculture models can be tested in a sandbox using trustworthy validation
procedures

¢ Autonomousvehicles operating in fields where manual workersare also present

e Systems where animal welfare can be at risk or where a human/animal interaction can pose
dangerous situationsfor workers

¢ Albaseddiagnosticsystemsand subsequent recommendations/prescriptions foranimal health

e Longterm effects of the introduction of new varieties/breeds on biodiversityand natural flora
orfauna

e Thecomparison of Aladvisorysystemsdevelopedby large industrial groups for bias, including
therisk of a digital divide in agriculture

e The use of smart crop protection methods on the development of chemical and mechanicl
weed resistance

¢ Evaluatethelongterm effects of new practices introduced under CAP

e Sandboxes as a testbed for a combination of physical systems, to transparently test new
technologies and contribute to evidence-based adherence to the objectives of some CAP
requirementswhile adhering to Alregulations

¢ Sandboxgreenhouse for experimenting with Albased technologies of indoorcrop production
towards green production methods (CO, reduction or absorption, no pesticides)

o Testtheimplications of the Artificial Intelligence Act when other EU Directives may be involved
(e.g.the Machinery Directive), like those for certification and standardisation (ISO)
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¢ Alsystemsdeveloped outside Europe can test if they comply with the EU Artificial Intelligence
act (and the Data Protection Act,among others)

The use of Alin areas that matter to human life (agriculture, forestry, climate, health, etc.) has lead
to an increased need for trustworthy Al with two main components: explainability and robustness.
One step toward making Al more robust is to leverage expert knowledge in what can be called
human-centred Al (HCAI); it is a combination of 'artificial intelligence' and 'natural intelligence' to
empower, amplify,and augment human performance, rather than replace people (Holzinger et al,
2022).
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9. Policy options for the use and simulation of Al in the agri-
food sector

Artificialintelligence is considered to be one of the tools that will allow new insights to improve or
optimise existing technologies or processesin the agri-food chain; suchas for farm decision making
or optimal control of plant growth. Furthermore, the set of techniques available in Al will lead to
new opportunities and technologies, such as autonomousagricultural robots, and automated cop
protection or fruit harvesting. A combination of scientific discoveries may result, as well as insights
derived from the analysis of (massive) quantities of data.

Worldwide smart information systems (based on 'Big Data' and Al) are being hailed as a possible
solution to help better and more effectively manage plants, seeds, harvesting and farms in the
agricultural industry. An exponential growth in data has accompanied the digitalisation of
agriculture through the proliferation of mobile technology, remote-sensing technologies and
distributed computing capabilities. Accordingto the World Bank, the effective management of data
will open new opportunitiesto improve the lives and livelihoods of smallholderfarmers by lowering
costs and reducing information asymmetries.However, the lack of experience in data management
or adoption of data driven services can limit the possibilities of digital transformation (Robert
Townsend etal., 2019).

In the following sections, some of the key issues are discussed as they relate to liability and risks or
to ethical and societal concerns from researchers and stakeholders. Thereafter, some options or
possibilities for action and expected effects are given.

9.1.Issues with the application of Al in the agri-food sector

The use of Al-based solutionsmay giverise to several concernsabout the concentration of power in
the hands of large corporations, i.e. agricultural technology providers with a strong and dominating
technological capability. The technology users orfarmersarevariable in size and may have concerns
about their privacy, confidentiality, andthe ownership of their data. They may wantto know how to
protect themselves, in the case of unexpected usage, undesirable or, even, physical or financial
damage. Even moreso, since the technology and its applications in agriculture are rathernew and
many developments are ongoing with considerable activity in well-established ICT companies, as
well as new start-ups; end usersare ratherunfamiliar with the technology.

Some of the ethical issues raised by Al in agriculture intersect with ongoing controversies about
agricultural policy in general. This includes whethergovernmentsshould try to protect 'small farms'
from being outcompeted and bought up by largerconcerns; the appropriate role of the market vis-
a-vis food security; the ethics of intensive animal production; the relative merits of large-scale versus
small-scale farming; and the genetic modificationof crops and animals (Sparrow et al., 2021).

9.1.1. Ethical and societal issues

Dara et al. (2022) proposed an ethical framework for the design and development of Al-based
technologies with an ethical legitimacy and accountability that also gains the trust of farmers as
stakeholders. In this framework, there are six considerations: 1) fairness, 2) transparency,
3) accountability, 4) sustainability, 5) privacy, 6) robustness. Some or most of these should be the
responsibility of the technology providers, but it may be an option to have legislative initiatives to
clarify therights and expectations of farmers, technology providers or the public.
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Fairness and transparency

'‘Black box' models are created directly from data by an algorithm. Trusting the black box model
implies trust in the entire data set on which it was built (Rudin & Radin, 2019). However, every (large)
data set may contain imperfectionsdue to missing data orerrorsin the codingof manually recorded
data, etc. These risks introduce bias and reduce the fairness of the Al models. The implementation
of such models may lead to serious problems or toenabling actions that cannot be implemented or
tolerated. The training, validation, and testing of data sets should be sufficiently relevant,
representative, free from error and complete, in view of the intended purpose of the modeland its
calibration. The need for high quality data is also recognised in the Artificial Intelligence Act (EUR-
Lex - 52021PC0206 - EN). Transparency of Al algorithms and models can be an important factor
when enabling farmers to understand, trustand finally adopt systems based on Al or machine
learning.ltis also importantthatboth farmersand their advisorsreceive suitable training.

In several cases, efforts are made to explain the behaviour of the black box models. Explanations
often do not make senseor do not provide enoughdetail to understand what the black boxis doing
(Rudin, 2019). However, creating or designing models that are inherently interpretable in the first
place, can help provide a better understandingof and trust in the autonomous decisions made and
they often become more (and not less)accurate.

Digital literacy, digital divide and dataownership

Agri-food companies have started to extract value from the data they collect and to use digital
technologies to lock farmers in to their own product ecosystems (e.g. through farm inputs or
machinery).In a report by the Centre for European Policy Studies and the Barilla Centre for Food &
Nutrition Foundation (Rendaet al., 2019) it is noted that the digital transformation has the potential
to empower small-scale farmers. However, in the absence of dedicated public policy, they may be
excluded from the supply chain or left in a new situation of economic dependency, in which they
own their land but rent their data and digital equipment from larger agri-food companies, or even
tech giants.

There is also a discussion on data ownership by farmers, the technical support they receive from
companies for collecting data and rewards for the intellectual property claimed by companies that
usedatafrom many farmers to develop Al based algorithms forfarm advice and decision making. A
Code of Conduct on agricultural data sharing by contractual agreementhas been agreed between
farmer organisations, agricultural technology corporations and agricultural suppliers and
cooperatives (Ader, 2021). The farmer remains at the heart of the collection, processing, and
managementofagricultural data.

The Code of Conduct between farmer organisations, agricultural technology corporations and
agricultural suppliers and cooperatives contains non-binding guidelines and is not to be used as a
legal document. It refers to legal documentsand relevant EU legislation.

Traceability and monopoly

Digital tech companies, in combination with retailers, are becoming ever more important and are
also increasingly shaping the production and consumption of food. 'Going digital' or 'smart' is
becoming a hegemonic model of economic and social development, in the agri-food system and
beyond (Prauseetal., 2021).

Standards and regulationsdriven by concernsoverthe climate crisis and food safety, particularlyin
the EU, might become a further driver towards digitalisation of 'climate-smart' agriculture. Using
digital technologies is a way for farmers and food traders to prove their compliance with complex
national or EU policies and with bi- and multilateral trade agreements. This may help retailers to
intensify their control over food producersandcommodity chains. Togetherwith large e-commerce
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companies, these actors are alsoincreasingly shapingthe production and consumption of food. This
may affect the agro-ecology and the (bio)diversity of agricultural production without facing
effective government regulation.

9.1.2. High-risks and liabilities from the application of Al

In agriculture, three types of risk stemming from Al or machine learning are considered: (1) risks
relating to data, including acquisition, access, quality, and trust;(2) risks emerging fromthe narrow
optimisation of models and unequal adoption of technology during design and early deployment
of ML systems;and (3) risks associated with deployment at the scale of ML platforms (Tzachoret al,
2022). How can users beinformed aboutthe potential risksfor their farmor business?

Health risks for people and animals

In thereview of the agricultural sectors, it has becomeclear that Al will be able to better organise or
optimise current processes, reduce waste frominputs and outputs and improve animal welfare. It
also offers new opportunities like autonomous mechanical weeding (instead of chemical use), or
new harvestingand storage technologies.Thereis a risk of the spreading of crop disease that is not
detected by the agricultural Albut that may reduce food availability, such as mycotoxins or the risk
of zoonoses (diseases transmitted fromanimals to humans). The questionis howto manage these
in Alapplications in agriculture.

Furthermore, Al in the agri-food sector needs sufficient robustness against hacking or other
inappropriate use. Animal and crop health can have major implicationsfor human health, as well as
for the food supply. Therefore, the highestlevel of security should be considered.

Accountability and loss of income from Al implementation

Al providers of crop protection services can include the detection and recognition of diseases. The
strategy for dealing with this can be advice on chemical crop protection andthe timing of it, taking
weather forecasts into account. Erroneous weather forecasting could lead to erroneous treatment
advice that ultimately results in crop loss. Similarly, damage or loss of animals can happen after
treatment recommendations.

In a similar way, autonomous farm equipment or robots can cause damage to the crop or to
neighbouring cropsorinstallationsor farm workers.

9.1.3. Concernsfrom stakeholdersand society

Production methods in agriculture and agri-food often raise concerns from consumers, related to
their potentialimpacton health and onthe environment.The use of Almustbe clarified, in the sense
that the production methods remain based on solid biological and agronomic principles, but that
one canimprove on these practices to really make use of all the available information. On the other
hand, some new technologies and tools, like automation and robotics, raise concern about the
interaction of a farmer with his products. Furthermore, it may not always be clear who the
beneficiaries are, or where the control over food production resides. Some of these concerns are
given here.

Al, automation, and protection of farm workers

Automation in agriculture, including autonomous plant production in greenhouses or plant
factories, has the potential tobringboth opportunities andrisks toworking conditions. Onthe other
hand, the application of automatedtechnologiesto the job market brings physicaland psychosodal
risks. As a follow up to Deshpande et al. (2021), attention should be paid to the way that (fully)
autonomous systems can comply with labour regulations and the risks to workers that must be
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avoided. It can include minimalinvestment in technologyand computer literacy as part of education
andtraining, to create a more economically resilient workforce.

Overcoming barriers for application and policy options would require one or more demonstration
sites, where digital twins of a greenhouse crop production facility can be tested in a safe
environment for different crops and workers. This would give growers, as well as workers,
confidence in the power of data and the Al-driven control of crop production systems. This policy
option/initiative also relates to options on automated production facilities. Testing and
experimentation facilities, as well as digital sandboxes, could be suitable tools.

Water resources protection policy

Operators or users of the software should establish a policy on how to deal with potential water
shortages, suchthatthereis consent onhow the water priorities are established.In case of expected
shortages, usersshould receivean advanced warningsuch thattheycan altertheir production plans
to cope with limited supply. Regulatorsshould be informedabout possible limitations in the supply
of drinking water or of water for industrial use. These uses should also be included in the Almodels
that manage or forecast regional water supplies.

A digitalsandboxmust be installed, in which long-term effects of Al models can be simulated. The
hierarchy effect of these models must be tested forthe long-term effects of water collection, run-off
avoidance, water storage and water supplies to the different users. This is to ensure that the effect
of theyearly short-term recommendations does not lead to depletions of the water reservoirs or the
available ground water, with all the subsequent damage to the environment and the economic
activities in the long term.

Animal welfare andthe CAP

Data-driven technology should be integrated in the official animal welfare standards — these
solutions will reduce the subjective point-in-time assessment thatis now ongoing.

Labels on animal-derived productsshould include objective dataderived fromon-farmsensors.
ISO standards on the design of animal monitoring technologies should be adopted by the industry.
The storage and collection of data and monetisation in the agri-food value chain

The presence of sensor networks contributes to novel procedures to supervise or evaluate the
performance of equipment in thefield or on the farm, like in animalhousing or product storage. It
is offered as a service for preventive maintenance of equipment and to give the farmer advanced
warnings of potential break downs.

Some of the data that are collected in this way are very machine-specificand would serve only the
manufacturers of those specific tools. However, the data transmission bandwidth is usually large
enough that additional data canbe collected, not only for machinery maintenance, but alsorelating
to farm management. The manufacturers can benefit if they intend to use the data for production
line evaluation. A farmermaynot be aware of this practice, or they may notbe capable of detecting
or evaluating this 'semi-hidden 'data collection. There mayalso be privacy issues here.

One expects that when such a practice is implanted in animal housing and in cases of
mechanisation, then the farmer or customer must be fully informed about the extent of the data
being collected by the operator and how these data will be used or passed on to ICT providers or
developers (and what the monetisation of these data lookslike). In any case, the farmer could ask to
receive a free copy of the datain a readable form without the need for additional software.

A broader approach is largely missing for estimating the impacts of digitalisation on the
organisationof the agri-food system, since the current debate's tendency is to focus ondigitalisation
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at the input and farm level. One reason for this might be that digitalisation along the food
commodity chain seems to be discussed under different terms and in different strands of the
literature. Automation, robotics, loT, Al and digitalisation in the food-processing and packaging
sector are referred to as Industry 4.0, while similar technologies at the farm level are referred to as
smart farming or Agriculture 4.0 (Prause et al., 2021). The Horizon Europe and digital programmes
are examples of multi-financial framework initiatives and should become a policy initiative for
further development.

Affordability of Al and concerns about the digital divide

There is no doubt that there is a cost to farmers who benefit from the new technology and
opportunities fromdigital agriculture. However, caution should be employed so that this does not
widen the digital divide in farming communities.

Bringing the benefits of Al and digital agriculture to all farmers requires accessible networks, data
bases and machine learning or state of the art analytics algorithms. This accessibility includes the
possibility to uploadand collect data from wireless sensorsin the field and from machines operating
in the field. This implies affordable broadband internetaccess, not onlyin residences, but also in the
fields. Another complicating factor may be that some (or most) platforms on machines for data
acquisition or for the automation of actions, are proprietary (Chaterjiet al., 2020).

The CAP and data collection down to farm level

In the report by the European Courtof Auditors on Data in the Common Agricultural Policy (Special
Report Data in the Common Agricultural Policy, 2022), the following excerpts indicate that more and
more data are becoming available in national CAP-related databases. For a better evaluation of the
CAPandthe European Green Deal, it follows thatthe evolution of these databases extends downto
thefarmleveland,in some cases, tofield level.

Under the 'Farm to Fork' strategy, the European Commission intends to convert the farm
accountancy data network (FADN) into a farm sustainability data network (FSDN), with a view to
collecting farm-level data on the 'Farm to Fork' and biodiversity strategy targets, as well as other
sustainability indicators. The Commission published a roadmapin June 2021 and plans to present a
proposalforaregulationin the second quarter of 2022.

The Commission has expressed the need for a common unique identifier for agricultural holdings
(farms) that would make it possible to link farm-level data from various data sources (e.g.
administrative registers and surveys). The identifier would have to take account of the different
Member State systemsand complexfarm structures with different combinationsand locations. This
requires acommon definition of afarm, and such a definition has animpact on financial indicators
like farmincome.

Using a digital field book, where farmersregister their activities, would be a step forward in digitising
farms and improving the monitoring of consumption and impact, with regards to pesticides,
fertilisers, water, and soil. The Commission's proposed FaST (Farm Sustainability Tool for Nutrients)
platform is a tool with a flexible architecture that provides modern analytics and interoperability
with many data sources. FaST builds on several data sources, which are either connected (live
sources) or imported (static sources) on the platform. To provide farmers with access to their own
data, FaST connects to the regional/national integrated administration and control system (IACS -
or equivalent farm registry), where the farmers' data are stored. The access to these databasesis not
clearly described, although DG AGRI and the Joint Research Centre (JRC) seem to be the primary
candidates for exploiting and analysing these available data. However, it appears that farmers
should also have access to datarelated to their farm.
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9.2. Action and regulation

In the previous section, severalissues were defined that may require special measures to ensure all
stakeholders a fair and equitable participation in the benefits that Al may bring to agriculture.
Farmers and SMEs in agri-food are, mostly, rather small independent operators, while technology
providers and retailers have considerable economic power, which gives them the capacity to
impose rules on their suppliers and, to some extent, their clients. Legislators can play arole here, to
set the guidelines and therules to balance the interaction between stakeholders.

9.2.1. Regulatory policy options

Farmers, large and small, see the introduction of new technologies as a potential source for
improving their operationsand /or making their farms (more) profitable. On the other hand, there
is a cost related to the use of Al and the benefits are not always clear. Technology providers are
usually large software developers or equipment manufacturers. This results in an uneven
knowledge and expertise background between farmer and supplier. Regulation can play a role in
levelling the ground between these different parties or stakeholders.

Requlations on the rights and expectations of farmers, technology providers and the public

Artificial intelligence applied to agriculture promises data-informed ways to support farmers'
traditional practices, while mitigating the challenges. However, the drive toward precision
agricultural technologies is focused on large-scale monoculture practices that are unsustainable
and economically risky for farmers. Agri-tech companies tend to focus more on the technological
aspects than on the agricultural aspects. The solutions provided become increasingly capable of
collecting data that can yield importantinformation tothe farmer aswell as to agri-tech companies.

When crops are produced under widely varying agricultural, environmental and management
conditions, the data collected can become the basis for models that provide information to the
farmer for use in making decisions on crop management and planning future crops.In this respect,
tech providers would like access to the agricultural data and, if possible, in an exclusive way.

At present, no EU legislation specifically regulates the question of ownership of data (Agri Data
Requlation (EU GDPR and US) - Enveve S.A., n.d.). However, in the proposed EU digital data act, data
users are defined (e.g. the farmer who harvests his grain) versus the data holder (e.g. the combine
manufacturer). Forfarmers generating the datato remain in control, the data hasto be readable by
the farmer in an open-source format. Also, the data should be transportable, so that a farmer can
use the data when they move toa different technology provider.Farmersshould be able to enforce
copyright on their data. The proprietary data about the machine itself can then be part of the
copyright of the manufacturer.

Legislative initiatives may be called upon to clarify the rights and expectations of farmers and
technology providers.This may include specificationsfor making dataavailable in a defined format
while access rights to data can also beregulated.

Alegislative regulation on data ownership and database consultation could specify thatthe farmer
that collects or enters the data is the owner of the data and that they can transport these data to
third parties in a readable format and units. These third parties may be consultants, certification
schemes or equipment manufacturers. The limitation to this is that it only applies to agricultural
data, and specific machine data or database codes are proprietary to the scheme owner or
equipment supplier.

One policy option is to specify a data retention regulation. When a technology provider, consultant
or other external agentis given access to the farmer's data, then the user-agreement must spedify
how the data will be archived, how long it will be kept, and how it will be removed or returned to
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the farmer, in additionto howthe farmers canaccessthe data themselves. It should also define what
happens to the data once a contractis terminated.

Arisk and liability requlation

In global agriculture, three types of risks stemming from Al or machine learning are considered:
(1) risks relating to data, including acquisition, access, quality, and trust; (2) risks emerging fromthe
narrow optimisation of models and unequal adoption of technology during design and early
deployment of machine learning systems; and (3) risks associated with deployment at the scale of
machine learning platforms(Tzachoretal., 2022).

The question then arises as to how users can be informed of the potential risks to their farm or
business. Insurance companies alsowant to know what risks they should cover.

A possibility for meeting these needs would be establishing a risk assessment body, in conjunction
with the modeland data quality evaluation policy described in Section 9.2.2.

Another option would be to allow insurance companies to take the initiative for risk assessment
related to Alapplications in machinery, as farm management toolsor in the value chain. This could
lead to an insurance frameworkwhich insurancescompanies, Al providersand userscan use to set
coverage and premium levels.

However, some obligationsrelatedto liability determination, in the case of accidents, could also be
considered for alegalframework.

¢ It may be interesting to separate machine functions that are under the control of a human
operator (the motion of the carrier) fromthose thathave been automated, e.g. the functioning
of someinstruments (spray applicationin the case of crop protection), which are controlled by
Al software. Separate insurance clauses have to be envisaged for the driver, the manufacturer
of the machine and, if that is the case, the software supplier. Changes to the hardware or the
software that are notauthorised by the manufacturer or supplier can transferthe responsibility
(andinsurance requirements) to the ownerofthe machine.

¢ [t would then become necessary to include an obligation for the preservation of discoverable
information that may be relevant evidence or useful for adversaries in incidents related to
damageto crops, property, ortheenvironment. However, this mayalso imply the need to access
dataoreven a proprietarycode.

¢ Another option would be leaving the insurance responsibility entirely to the operator, who
would have to sign an agreementwith the manufacturerso that, the latter would in no situation
be held responsible for any incident ordamage thatresultsfrom operating the equipment. Also,
the manufacturer may also be asked to preserve discoverable information and the provide
possibility to read proprietarydata andcode.

Automation and the protection of farm workers

Automation in agriculture, including autonomous plant production in greenhouses or plant
factories, has the potential to bring both opportunities and risks to working conditions. European
agriculture depends, to a largeextent, onmigrant workers, many of them undocumented, who take
up a significant proportion of tasks, such as picking fruits and vegetables, as well as packing and
processing food. In this context, it is also significant that more than a third of EU farmers are over
65 years old, while less than 5% are under 35, and few have had training in the use of digital
technologies. For untrained workers or farmers, automated technologies may bring risks or
diminished job opportunities.

Farmers and farm workers need to be equipped with the skills that prepare them for the digital
aspects of farming. The European Federation of Food, Agriculture and Tourism Trade Unions (EFFAT)
is already, with the support of the European Commission, looking into the opportunities and risks
of digitisation and the impact of digital transformation on labour, labour markets,social protection
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andrelated institutions (N.N., 2021). Training programmes mustbe developed as part of the digital
education of farmers, butvocational training mustalso be made available for migrant workers.

It may be an appropriatepolicy for mandatorytrainingof workersin operating machines thathave
built-in Al and digital automation functions. This training should include basic information on the
machine operations and the controls that the operator can supervise or manipulate. Emergency
situations should be part of the training. In the case of (fully) autonomous systems, attention should
be paid to how (fully) autonomous systems can comply with labour regulations and the risks to
workers that must be avoided.

Overcoming barriers to the application of these policy options could require one or more
demonstrationsites, where digital twins of a greenhouse crop production facility could be tested in
a safe environment, for different crops and workers. This would give growers, as well as workers,
confidence in the power of data and Al-driven control of crop production systems. These training
sites could be organised throughatender fora digital agriculture trainingsite and linked to the risk
assessment bodies mentioned above.

9.2.2. Policy optionsfor knowledge creation and management

Artificial intelligence in agri-food makes use of data collected from growers, either manually or by
machine. It is possible to extract models containing relationships between many factors in food
production, by lookingat the datacollected from a large number of farmers with different products
or production methods. These models can help farmers to understand ongoing processes in the
field and make effective decisionsin crop oranimal management. Providing farmers with the proper
training improves their interactionwith technology suppliers, while helping them gain insight into
the biological and agronomic processes, raising awareness on the importance of the quality of the
data they collect.

Regulation on the exploitation and governance ofthe European databases

The use of databases for the evaluation of the CAPand the European green deal by EU institutions
(DG AGRIor JRC), can befully supported. However, the issue of regulating accessto these databases
should also be carefully considered.

Databases generated using public funding and resources should be publicly accessible while
respecting privacy. Therefore, farmers should be able to access their own data, as well as
anonymised or aggregated data for the sameregion or same type of farm. Research institutes can
apply to therelevant database managing authority for temporary access to a database for research
purposes, under the condition that onlyaggregated resultsare given and no individual farm can be
traced in reports. They should be wary of personally identifiable information that can be found
through GPS tags or georeferenceddata.

Whether the use of and access to the databases should also be made possible for commercial
companies (consultants, financial institutions, machinery companies) in an anonymised way, so that
individual entries cannot be traced back to individual farms, should also be discussed. Whether
these companies have to pay a fee, relative to the number of datapoints used should also be
considered.

Transparency and guality assurance of Almodels

The transparency and quality of the Almodels used in decision-making depends on the modelling
algorithms and the quality of the data used as the basis for the Al models. Since these models are
used as vehicles for the decisions made when implemented for equipment operations or for farm
management, thenitis only fair that users enjoy a certain level of quality and trustworthiness. One
option for knowledge management is passing legislation that forces the model developer or
implementer to provide the user with information containing the description of the underlying
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model approach, according to categories such as: biophysics based mathematical models,
interpretable modelling,or black boxmodels. In addition, the supplier should statewhich database
was used for building the model and on which database a validationtestwas run, togetherwith the
outcome of this validation. In that case, a history of the evolution of the models with the different
releases should also be provided.

In addition to the above policy, and since the quality of the data is important for the quality of the
models, a model developer may be asked to submit the database that was used for quality
evaluation and testing by a proper control body (e.g. the JRC could assume this role). An advisory
panel could be created within that control body, which would specify the rules and procedures for
the quality evaluation, including a quality scale to be given as result of the evaluation of the
database.The controlbody may contract third parties to runthe evaluation.

Additional legislation can stipulate a more in-depth evaluation that does not restrict itself to the
databases but also considers the performance of Al models. The criteria may include the model
outcome over a specified range of testing data, the level of interpretable results or the underlying
assumptions and biophysical models. The reporting method for the results of those tests could be
decided by the control body (e.g. JRC together with an expert team from other research institutes
and industry). The outcome of the evaluation should also include a sensitivity analysis for small or
unexpected deviations or errors in the data. Such a policy should become effective after a
preparatory and installation period of about three years. In any case, the confidentiality of the
information supplied by the model developer must be guaranteed.

Digital literacy and the digital divide

Every user or person that is confronted with Alin agri-food should receive suitable training in their
own language. A numberof programsarein place in several commercial institutes andat university
level. However, enrolling in these or other training programs mustbe made attractive, including to
small farmers. High prices for digital technologies make it unaffordable to many farmers and,
thereby, create or reinforce a digital divide. A way to address this problem begins with providing
the appropriate training.This trainingshould start at the level of educationthe person hasreceived
previously but should be extended, to bring general education to a higher level. During the
education period, youngfarmers and future workersin the sector should be part-time employedin
an agriculture-related occupation, while their salaries are complemented by a study grantfrom a
professional or vocational training program established by the EU. The scope of the training must
focus on the business model of the specific sector first of all, but pay special attention to new
technologies as well.

The development of robust Al models that can adapt to the farm size has to be encouraged.
Technology developers must indicate if their products are, indeed, also applicable to small farms
and can deliver an improvement in farm management; otherwise they must clarify the effect that
the size of the exploitation has on the performance of the model. The use of demonstrators, like
digital sandboxes and test and experimentation facilities (TEFs) established under the CAP for
training programmes, must be encouraged oreven made mandatory.

COPA (the Committee of Professional Agricultural Organisations), qualified technology federations
and commercial organisations can apply to administer the training programs and are then made
responsible for the quality of the training and for the number of participants that successfully
complete the training. For this purpose, cooperation with EFFAT (the European Federation of Food,
Agriculture,and Tourism Trade Unions) is encouraged.

9.2.3. Policy options towards Al based agricultural economy

Data collection and data entry can be time-consuming for a farmer and they should not be forced
to enter the same data again, if different governmental agencies or commercial operators need it.
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When, under certain rules, datacan be accessed by different organisations, then it is very likely that
new start-ups will take a different look at the dataand comeup with new applications that may give
more independent advice to farmers. In all cases, the availability of a reliable data network is
necessaryinallruralareas.

Legislation that prevents the lock-in of farmers in corporate digital technology

There are several private organisations and public authorities that demand or oblige farmers to
contribute data on their farming practices and activities.

Hence, many databases are almost completely based on data entered or owned by the farmers
(input manually or by using sensors on the equipment operating on their farm), as well as that
collected through public funds. It follows that new legislation can encourage the development of
non-proprietary technologies and software for openaccess and open source solutions, that lead to
thetechnological sovereignty of farmers. This legislation prevents the lock-in of farmersin terms of
corporate digital technology. On the other hand, it will give opportunities to new entrants in the
software development market and independentconsultancy services. It alsogives new entrants the
opportunity to participate in the monetisation of agricultural data. It can be expected that
corporationsmay consider thisas hampering theirinnovation strategy.

In all cases, it may be of interest that data (collected by machines or manually entered), as well as
meta-data, are readable by open-source software. This would overcome thecomplicating factor that
some (or most) platforms on machines for data acquisition or the automation of actions, are
proprietary.

Policies towards new market entrants and to limit dominant positions _of first movers

The availability of a large network of farmers that contribute to large databases with quality data,
combined with publicly available databases,is almosta prerequisite for developing some Al tools in
agriculture. When the number of participants increases, then it can be expected that the models
become better and the first technology provider that operates with these data has a competitive
advantageoverlaterentrants and can generate substantial profits that may be used to prohibit new
entrants. The first mover can, in some cases, claim intellectual property rights even on the output
type and format of the models.

It can be an option that potential new entrants can obtain financial support to cooperate with public
technological institutions, in order to co-develop new applications and compete as start-ups with
the incumbents in some applications of Al in agriculture. For this co-development, they are also
granted access to publicly available databases and can make an agreementwith the institutions on
the use of basic Al tools.

This regulation can also imply thatrulesare set to make it possible for a user (farmer, SME) to switch
to a new technology provider at a reasonable cost, including the transfer of data in a readable
format.

Affordability and accessibility of the data infrastructure and of the IT network

Bringing the benefits of Alanddigital agriculture toall farmers requires the accessibility of networks,
databases and machine learning or state of the art analytics algorithms. This accessibility includes
the possibility to upload and collect data from wireless sensors in the field and from machines
operating in the field. Hence, it implies affordable broadband internet access, not only in houses,
butalsoinfields.

The policy options should specify the granularity of the telecommunication infrastructure in Europe,
that must be such that the required data transmission rates for using artificial intelligence and
automationin agricultureis also possiblein remoterural areas, at a cost that does notdiscriminate
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between remote areas, rural areas, or more populated areas. When licenses are sold or granted to
the ICT providers this should be an obligatoryrequirement.

Policy to support investments by farmers or SMEs to make use of Al potential benefits

Besides the investment in machinery and equipment that have built-in technologies for data
collection or autonomousoperations, there are alsoothercomplimentary investments that farmers
or SME's have to make, like specialised infrastructure for collecting and transferring the data to the
appropriate database orthe temporary hiring of specialised workers who know how to use the data.
In addition, switching to Al for making use of the presence of Al in new equipment (whether
purchased or used by contractors or custom operators) may require changing the process or the
overallstrategy.

One policy option is to encourage the specific set-up of regional user organisations that receive
financial support for technological investment. These can be producer organisations that are
operating under the CAP. On the other hand, policies can also encourage targeted investment in
selected verticalindustries that could benefit all players, where individual farmers or SMEs could not
affordtoinvestalone.
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Annex

Commercial companies thatoffer Al services in agriculture (nonexhaustive list)

- accordingtothesize of the companies and the regions (Artificial Intelligence in Agriculture
Market by Technology (Machine Learning, Computer Vision, and Predictive Analytics),
Offering (Software, Hardware, Al-as-a-Service, and Services), Application, and Geography -
Global Forecastto 2026,n.d.):

o ByCompany Type:Tier 1-35%, Tier 2 — 40%, and Tier 3 - 25%
o ByRegion: Americas—40%, Europe - 30%, Asia Pacific (APAC)-20%, and Rest of the
World (RoW) - 10%

The largest companies that are the prominent players in Al in the agriculture market are:
International Business Machines Corp. (IBM) (US), Deere & Company (John Deere) (US), Microsoft
Corporation (Microsoft) (US), Farmers Edge Inc. (Farmers Edge) (Canada), The Climate Corporation
(Climate Corp.) (US), ec2ce (ec2ce) (Spain), Descartes Labs, Inc. (Descartes Labs) (US), AgEagle Aerial
Systems (AgEagle) (US), and aWhereInc. (@Where) (US).

- Start-ups activein Alin Agriculture (Alin Agriculture Start-ups | Tracxn, 2022)
USA 175

United Kingdom 39

Israel 36

The Netherlands 27

Brazil 23

France 19

o O O O OO

Source: Top 25 Agri-Tech Companiesin 2021 | by Reetika | appengine.ai | Medium

A list with 14 important start-upsfor Alin Agricultureis givenin Top 14 Startups Developing Al for
Agriculture (2022). Most of the start-ups in this are in the USA.

e Withintheframework of EIT, a report was prepareddescribing the situation of digitalisation and
Al maturity among small and medium sized enterprises (SME) from manufacturing and food
industries (Baruchelliet al., 2020).

¢ In this report, a number of the above-mentioned companies are briefly described: what they
provide and how it is done (pp15-17), in agricultural production. Commercial activities by
companies in the food processing and manufacturing industries form the main part of the
report.

e At the time of writing this report, there was no information from other countries or regions
about the evolution of Al services offered to agriculture.
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